
SERVICE ORIENTED S

B. Copy, CERN, Geneva, Switzerland#

Abstract
DIP [1] is a middleware infrastructure developed at

CERN to allow lightweight communications between the
various distributed components of a control system (such
as detector control systems or gas control systems). DIP
publications are currently subject to a lack of visibility
from the CERN general purpose network and a lack of
formal service level agreements between information
publishers and consumers. The DIP contract management
system addresses these limitations by providing a
publication monitoring tool that can make available both
publication data and publication status on the web through
a javascript API for inclusion in web pages and
integration with advanced AJAX libraries (such as the
Google Web Toolkit Visualization API). It also performs
status information logging, and advertises such
information in the form of DIP publications (to ease
integration with SCADA systems such as PVSS). We will
demonstrate how complex structured information can be
easily made available to a large array of consumers
through the usage of the Spring framework and the
multiple configuration based adapters it offers to a vast
choice of communication protocols.

STATUS MONITORING FOR DIP
DIP is a CERN developed middleware platform [1] that

provides services allowing the exchange of information
between control systems or between the distributed
components of a control system :

• A “naming” service that exposes a tree of named
publications (i.e. a publication is a set of name-
value pairs)

• A C++ / Java API to support the creation of
publications or subscriptions to existing
publications.

• Integration layer with SCADA or measurement
systems, such as PVSS or NI LabVIEW.

The DIP naming service (DNS) is a useful indirection
or “publisher lookup” mechanism but not a fully fledged
directory service, in the sense that publication entries are
non-persistent. It is therefore impossible to determine
whether such non-existent publication is missing because
it is temporarily unavailable or because it has been retired
or renamed. And because the DNS does not incorporate
any notion of timing, it is also impossible to apply time-
based constraints, such as minimum publication refresh
times or publication status time outs.

Numerous systems at CERN rely on large numbers of
publications being active at the same time and originating
from a large variety of infrastructure or accelerator
services. Such lists of publications are essentially
publication contracts, binding the publisher to a

consumer, but such associations were not registered
anywhere.

The DIP monitoring service aims at solving these
limitations by making publications contract status widely
available on the web and let expert users identify which
publications are at fault from any web browser client on
the CERN network.

SERVICE ORIENTED ARCHITECTURE
Service Oriented Architecture (SOA) is a software

design approach that compasses information systems as a
set of loosely coupled and interoperable services, thereby
improving their testability and scalability [2]. Services in
the SOA sense are typically defined in terms of atomic
and stateless actions, thereby making them easier to
combine and encapsulate in order to build up higher
orders of functionality.

Loose coupling in SOA is achieved :
• On one hand by using standard messaging

protocols that guarantee platform independence;
• On the other, by the usage of meta-data that

describe available service calls, such that their
discovery and invocation can be easily
automated.

As a mean to deal with the complexity of building large
information systems, SOA lets developers focus on
business relevant code and make abstraction of
communication protocols, programming languages or
messaging format requirements. SOA implementations
rely on off-the-shelf information protocols, such as SOAP
[3], CORBA or Microsoft DCOM. To this day, the HTTP
protocol, due to its simplicity and ubiquity, is a
particularly suitable foundation for most SOA
implementations.

SOA IMPLEMENTATION WITH THE
SPRING FRAMEWORK

The Spring framework (Spring) [4] is an open-source
framework that also focuses on re-usability and testability
of complex information systems, but at the programming
language level. While SOA focuses on high-level business
services, Spring acts at the object instance level and
encourages interface-first design and unit testability by
implementing the “dependency injection” design pattern
[5].

As demonstrated in Figure 1, Spring assists developers
by letting them write service implementations that are free
of any traditionally complex concerns such as transaction
support, security, resource pooling or thread safety. Such
cross-cutting aspects can be weaved into and amongst
object instances as and when such needs emerge.

#
__
brice.copy@cern.ch

TATUS MONITORING FOR DIP MIDDLEWARE

FRA003 Proceedings of ICALEPCS2009, Kobe, Japan

Web Technology

928

Figure 1 : Spring service implementation stack.

The Spring framework incidentally provides support for
a large range of SOA compliant remoting protocols, such
as SOAP, through the usage of service exporters. Service
exporters transform an interface definition into a fully
fledged service, generating on-the-fly metadata (for
instance WSDL definitions [6]) and providing messaging
support functions such as data marshalling and broking.

LIGHTWEIGHT SOA
One great criticism of SOAP is its heavy reliance on

XML, which carries both an important performance
penalty and added complexity for platforms without
native XML processing support.

There are many lighter alternatives to SOAP as a
communication protocol, such as DWR, JSON-RPC [7]
or REST [8] which yield the same advantages in
numerous situations and are a more natural fit to their
service client platform.

Direct Web Remoting (DWR) [9] in particular is a
Javascript centric remoting protocol that exhibits SOA
characteristics (namely support for service call metadata
and a standard underlying messaging protocol) in a form
that any Javascript enabled web browser can use natively
[10].

DWR is used by the DIP monitoring tool to expose
Spring configured object method calls to any web
browser. It is therefore a simple and efficient way to
expose any service implementation to a large population
of users.

Such lightweight service implementations are
conveniently reused to implement AJAX web applications
[11].

AJAX web applications clearly separate the data from
its presentation. Presentation information is served in
most cases as a mix of HTML DOM documents and CSS
styling directives. Data is served asynchronously (i.e.
independently from the surrounding HTML DOM
document), either in XML or in a more natural Javascript

object notation (also referred to as JSON [7]). This results
in lower server resource consumption : the static
presentation layer is served once per client and cached,
the rest of the traffic being dedicated only to data
exchanges.

RICH WEB CLIENTS WITH GOOGLE
WEB TOOLKIT

AJAX applications rely on two important features of
modern web browsers :

• Their capability to emit HTTP requests
asynchronously, without affecting the HTML
page currently displayed.

• Their capability to manipulate DOM structures
programmatically with Javascript.

This second point has made Javascript the most obvious
choice for writing AJAX applications. As a scripting
language, Javascript currently suffers from differences
between browser implementations (forcing developers to
tune their code for specific browsers or specific browser
versions), poor programming tooling (e.g. no debuggers
can offer cross-browser support) and limitations inherent
to scripting languages (e.g. lack of strong typing support,
poor support for code refactoring). Such shortcomings
make it inappropriate for writing large and complex
applications.

The Google Web Toolkit (GWT) [12] is an open-source
development platform used to write Java event-based
applications (much similar to desktop applications) which
can be compiled to Javascript. The resulting applications
will run in any Javascript enabled web browser without
any need for plugins or a Java virtual machine runtime;
Such applications can be deployed wherever a static
HTML page could be published. GWT applications are
insulated from cross-browser issues, can be unit tested
and functionally tested using familiar testing frameworks
(such as JUnit) and benefit from mature Java tooling
(debugging, execution profiling, code refactoring, build
automation).

Figure 2 : Components of the design-time GWT platform.

Figure 2 provides an overview of the technology stack
provided by GWT at design time.

Proceedings of ICALEPCS2009, Kobe, Japan FRA003

Web Technology

929

The Java Runtime Emulation class library is a near
complete standard Java 5 core classes library, with the
notable exception of features that have no equivalent role
in a web application (for instance, object serialization
support).

The GWT class library provides essentially toolkit
widgets that are used to implement event-based user
interfaces (such as found in desktop applications).

The GWT shell is a web browser / web server
combination used at design time to simulate the behaviour
of a deployed application. At design-time, GWT
applications are still executed on top of a Java virtual
machine, and can therefore be tested, debugged and
profiling with standard Java tools (such as the Eclipse
development environment).

The GWT compiler comes into action at deployment
time, when the GWT application is ready to be deployed.
The GWT compiler performs Java source to Javascript
translation, code optimizations, resource packaging and
browser specific alternative implementations. The output
result is a set of web resource files (HTML, Javascript,
images, stylesheets...) that can be readily published.

Code reuse is also strongly promoted by GWT, as it
naturally supports Java distribution formats (i.e. JAR
files) and package based naming. Numerous GWT
extensions (such as the Google Visualization API) and
advanced widget libraries (such as EXT-GWT [13]) have
been published in the few years since the platform's
inception, offering a richness of presentation on a par with
most sophisticated desktop applications.

GWT also offers native Javascript integration through
the usage of a native interface mechanism comparable to
Java Native Interface (JNI). This offers the possibility to
integrate existing Javascript code base, at the cost of
having to deal with low-level Javascript concerns (such as
memory leaks, lack of cross-browser debugging).

The DIP monitoring application uses GWT to offer rich
interactions and complex user interfaces (such as a
recursive tree grid) which would require a large amount
of effort and yield a poorer user experience, had they been
implemented in a page based web application framework.

CONCLUSION
By employing modern dependency injection

frameworks such as Spring, it is now possible for a Java
or Microsoft.NET service development team to focus
solely on core business functionality and add at the cost of
an affordable configuration effort all the essential features
offered by the most advanced service oriented

implementations. These services can be deployed on a
variety of platforms, thereby avoiding vendor lock-in.

Lightweight services can in turn be easily integrated in
rich web based applications, providing a desktop-like
experience, with support for mature software
development tooling and without having to deal with the
usual hindrances imposed by Javascript code authoring.

REFERENCES
[1] W. Salter et al., “DIP Description” LDIWG (2004);

https://edms.cern.ch/file/457113/2/DIPDescription.doc.
[2] K. Channabasavaiah, K. Holley and E. Tuggle,

“Migrating to a service-oriented architecture”, IBM
DeveloperWorks, 16 Dec (2003);
http://www.ibm.com/developerworks/library/ws-
migratesoa/

[3] W3 consortium, “SOAP Specifications”, April
(2007); http://www.w3.org/TR/soap12.

[4] Springsource, “Spring 2.5 reference manual”,
November (2008); http://static.springsource.org/
spring/docs/2.5.x/reference/

[5] M. Fowler, “Inversion of Control Containers and the
Dependency Injection pattern”, January (2004);
http://martinfowler.com/articles/injection.html.

[6] W3 consortium, “Web service description language”,
March 2001, http://www.w3.org/TR/wsdl.

[7] R. Koebler, “JSON-RPC 2.0 specification”, JSON-
RPC working group, May (2009);
http://groups.google.com/group/json-rpc/web/json-
rpc-1-2-proposal?pli=1.

[8] C. Pautasso, O. Zimmermann, F. Leymann, "RESTful
Web Services vs. Big Web Services: Making the
Right Architectural Decision", 17th International
World Wide Web Conference (WWW2008) Beijing,
China, April (2008).

[9] J. Walker, “Direct Web Remoting”, July (2009);
http://directwebremoting.org/dwr/index.html.

[10] P. McCarthy, “Ajax for Java Developers : Ajax with
DWR“, IBM Developerworks, November (2005);
http://www.ibm.com/developerworks/java/library/j-
ajax3/

[11] J. Garrett, “Ajax: A New Approach to Web
Applications”, February (2005);
http://www.adaptivepath.com/ideas/essays/archives/
000385.php.

[12] B. Johnson et al., “Google Web Toolkit”, November
2006; http://code.google.com/webtoolkit/

[13] J. Slocum, “EXT GWT: Rich internet applications for
GWT”, February (2008); http://www.extjs.com/
products/gxt/

FRA003 Proceedings of ICALEPCS2009, Kobe, Japan

Web Technology

930

