
Object Oriented Programming Techniques Applied to Device ACCRBS
and Control

A.Gatz, W.D.Klotz, J.Meyer
ESRF, BP 220

F-38043 Grenoble Cedex
FRANCE

1 Introduction

Device access and device control is one of the most impor
tant tasks of any control system. This is because control
implies obtaining information about the physical world by
reading senS-Ors and modifying the behaviour of the phys
ical world by sending commands to actuators. At the
European Synchrotron Radiation Facility (ESRF,
ref. (1]) effort has gone into designing and implementing a
model for device access and control using as much as possi
ble the latest ideas and methods of Software Engineering.
One of the main contributions in recent years to Software
Engineering has been in the field of Object Oriented
Programming(OOP). Although the philosophy is not
new the refinement and application of this methodology
on a wide scale is. At the ESRF a model for device access
and control has been developed which is based on OOP
methods. This model, called the device server model,
is the topic of this paper. The device server model is writ
ten entirely in C and is therefore portable. It depends on
no other software and can be ported to any machine where
there is a C compiler. Because the model is based on OOP
it presents a user-oriented view of the world as opposed to
a software- or hardware-oriented view of the world.

This paper will describe the device server model. It will
describe the problem of device access and the advantages
of using OOP techniques to solve it. It will present the
model. The methodology used to implement OOP in the
device server model called Objects In C (OIC) will be
described. An example of a typical device server at the
ESRF will be presented. The experience gained from the
device server model will be discussed. The paper will con
clude with a discussion on how the device server model
could be standardised to treat a wider range of problems.

2 The Device Access Problem

The problem which the device server model is designed to
solve is a problem which every control system is faced with.
The problem could be described as - how to provide access
and control for all the physical devices which represent the
machine ?

Unfortunately there is no widely accepted industrial

standard for interfacing devices to computers. Although
some attempts have been made at defining an industrial
standard none of them have succeeded (see (2]). This
means that there are about as many ways to interface a
device to a computer as there are device suppliers.

The device access problem would be simple if a single
standard were adopted for interfacing. In reality however
this turns out to be too expensive because it involves extra
development costs for the suppliers.

3 The Device Server Model

At the ESRF a unified model (called the device server
model) has been developed to solve the problem of device
access and control. It is unified for two reasons -

o it presents a single interface for upper level applica
tions to all kinds of devices, and

o it defines the framework within which to implement
device access and control for all devices.

The model can be divided into a number of basic ele
ments - the device, the server, the Objects In C method
ology, the root class, the device class, resource database,
commands, local access, network access, and the applica
tion programmers interface.

3.1 The Model

The basic idea of the device server model is to treat each
device as an object which is created and stored in a pro
cess called a server.

Each device is a separate entity which has its own data
and behaviour. Each device has a unique name which iden
tifies it in network name space. Devices are configured via
resources which are stored in a database. Devices are
organised according to classes, each device belonging to
a class. Classes are implemented in C using a technique
called Objects In C. All classes are derived from one root
class. The class contains a generic description of the de
vice i.e. what actions can be performed on the device and
how it responds to them. The actions are made available

514

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS1991, Tsukuba, Japan JACoW Publishing

ISBN: 978-3-95450-254-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS1991-S14OOP04

S14OOP04

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
19
92
/2
0
24
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

514 Object Oriented Programming & Techniques

via commands. Commands can be executed focally or re
motely (i.e. across a network). Network access to a device
and its commands is provided by an application pro
grammers interface using a remote procedure call.

3.2 The Device

The device is at the heart of the device server model. It
represents a level of abstraction which previously did not
exist. A device can be a physical piece of hardware (e.g. an
interlock bit), an ensemble of hardware (e.g. a screen at
tached to a stepper motor), a logical device (e.g. a taper),
or a combination of all these (e.g. a storage ring). Each
device h!!B a unique name. At the ESRF a three field name
space (consisting of DOMAIN/FAMILY /MEMBER)
has been adopted.

The decision of what level of abstraction a device rep
resents depends on the requirements of the clients. At the
ESRF these are the machine physicists. Devices should
model the clients view of the problem as closely as possi
ble. Hardware dependencies should be hidden behind the
device abstraction. For example if a corrector consists of
three independant powersupplies the client (assuming she
is a machine physicist) should only see a single device -
the corrector, and not three independant devices.

All devices are treated a.s having state. Each device
has a list of commands which it understands. Before
any command can be executed the state machine gets
checked to see if the command can be executed in the
present state. The commands and the state machine are
implemented in the device's class.

3.3

Another integral part of the device server modei is the
server concept. The server is a process whose main task is
to offer one or many service(s) for clients who want to take
advantage thereof. The server spends most of its time in a
wait-loop for clients to demand its service(s). This
division of labour is known as the client-server concept.
It exists in different flavours and is very common in modern
operating systems.

The adoption of this concept in the device server model
has certain implications. The server in the device server
model is there to serve one or many device(s) i.e. there
is one server per device but there can be many devices
per server. The exact configuration depends on the hard
ware organisation, CPU charge, and the available memory.
The fact that there can be many devices per server means
that a single device should not monopolise the server for
more than a pre-defined amount of time. Otherwise the
server is blocked and new or existing clients will not be
able to connect to the same or other devices served by that
server. The server waits for clients by listening at a certain
network address. The mechanism for doing this is imple
mented by a remote procedure call. At the ESRF the
network addresses are determined dynamically (at server

515

startup time) and then stored in a database. The first time
a client connects to a server it goes to the database to re
trieve the server's address, after which it communicates
directly with the server.

3.4 Objects In C

The use of objects and classes in the device server model
necessitates appropiate OOP tools. The natural choice
would have been to use one of the many OOP languages
which are available on the market today. If possible one
for which a standard exists or will exist (e.g. c++). The
choice of a. language is not independant of the develop
ment evironment however. The language chosen has to be
fully compatible with the development environment. At
the ESRF the device access and control development envi
ronment consists of OS9, HP-UX, SunOS a.nd the SUN
NFS/RPC. Unfortunately there is no commercially avail
able OOP language compatible with this environment.
The only language which supports the above environment
is C. In order to use OOP techniques it was therefore
necessary to develop a methodology in C, called Objects
In C (from here on OIC). The methodology developed is
implemented entirely in C and is closely modelled on the
widget programming model (ref. [3]).

OIC implements each class as a structure in C. Class
hierarchies are supported by subdividing a class structure
into partial structures. Each partial structure representing
a super- or sub-class. Each class a minimum of
three files :

• a include file describing the class and object
structures,

" a public include file defining the class and object
types as pointers to structures and the class as an
external pointer to the class structure,

o a source code file which contains the code implement-
ing the class.

The private include file is used to define constants and/or
variables which should not be visible to the outside world
(the inverse being true for the public include file). All
functions implementing the class are defined to have static
scope in C. This means that they cannot be accessed di
rectly by any other classes or applications - they are only
accessible via the method-finder or as commands. This
enforces code-hiding and reinforces the concept of en
capsulation - a way of reducing between soft
ware modules and making them immune to changes in
the class implementation.

OIC implements an explicit method-finder. The
method-finder is used to search for methods in a cl!!BS or hi
erarchy of classes. The method-finder enables methods to
be inherited. Two special versions of the method-finder
exist for creating and for deleting objects.

Objects are also implemented as structures. Each object
has a pointer to its cl!!Bs structure. This means that class

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS1991, Tsukuba, Japan JACoW Publishing

ISBN: 978-3-95450-254-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS1991-S14OOP04

Object Oriented Programming & Techniques

S14OOP04

515

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
19
92
/2
0
24
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

related information (data and code) are stored only once
per process for all objects of the same class.

3.5 The Root Class

All device classes are derived from the same root class, the
DevServerClass.

The DevServerClass contains all common device server
code. This includes all code related to the application pro
grammer interface, the database connection, security, ad
ministration and so on. All device classes inherit this code
automatically, this means improvements and changes are
inherited too. The decision to have a single root class from
which all other clases are derived has been fundamental to
the success of the device server model. Other OOP based
systems have used the same principle (e.g. the NIH set of
classes, see [4]).

3.6 The Device Class

Organising devices into classes is an attempt to generalise
on common features between devices and to hide device
dependant details. The device class contains a complete
description and implementation of the behaviour of all
members of that class. Hardware specific details are imple
mented by the class in such a way that they a.re transparent
to device server clients. Typically the first level of device
classes (i.e. classes which deal directly with the first level
of hardware) will use the utilities offered by the operating
system (e.g. device drivers) to implement the hardware
specific details.

New device classes can be constructed out of existing
device classes; This way a new hierarchy of classes can
be built up in a short time. Device classes can use ex
isting devices as sub-objects. This means they appear
as terminators in the class structure and not within the
class hierarchy. This approach of reusing existing classes
is classical for OOP and is one of its main advantages.
It encourages code to be written (and maintained) only
once.

3. 7 The Resource Database

Implementing device access in classes forces the program
mer to implement a generic solution. To achieve complete
device independance it is necessary however to supplement
device classes with a possibility to configure devices at
runtime. This is achieved by the resource database.
Resources are identified by an ASCII string. They are as
sociated with devices via the device name. Resources are
implemented in the device class. A well designed device
class will define all device dependancies (e.g. hardware
addresses, constants, minimum and maximum values etc.
etc.) as resources. At runtime the device class will in
terrogate the database for the list of resources associated
with each device it must serve. This is done during device

device

Figure 1: Command execution in the Device Server Model

creation and/or initialisation time. Resources allow device
classes to be completely general and flexible.

At the ESRF the resources are stored offline in Oracle
where they can be accessed using an SQL*Forms applica
tion. Online access is provided by a database server which
interrogates a memory resident database (RTDB).

3.8 Commands

Each device class defines and implements a list of com·
mands. The commands are the applications dials and
knobs of the device. Commands (unlike methods) can not
be directly inherited from superclasses. They have a fixed
calling syntax - consisting of one input argument and one
output argument. Arguments can be complicated struc
tures. Commands can vary from simple On/Off type ac
tions to complicated sequences which involve a large num
ber of steps. Defining commands is the task of the class
implementor and his client. The list of commands to be
implemented depends on the definition of the device and
the implementation of the class. Because all commands
are executed synchronously care has to be taken that the
execution of a command does not take longer than the
maximum allowed time.

All commands are theoretically executable from a. re
mote client across the .network. It is possible however to
define a restricted usage of certain (or all) commands. This
ensures security for sensitive devices. Commands are ex
ecuted using the application programmers interface. Be
fore a command gets ca.lied the root class checks to see

516

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS1991, Tsukuba, Japan JACoW Publishing

ISBN: 978-3-95450-254-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS1991-S14OOP04

S14OOP04

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
19
92
/2
0
24
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

516 Object Oriented Programming & Techniques

wether the argument para.meters have been correctly spec
ified. The state machine is also called to see wether the
desired command can be executed in the present state.
This is implemented in the commandJiandler method
of the root class (see figure 1).

Global standard commands have been defined which are
implemented in every device class e.g. DevState to read
the device state. It is possible to define subsets of stan
dard commands for devices belonging to the same super
class which are to be implemented in all subclass of that
superclass.

3.9 Local Access

Not all clients of device access and control are network
clients. It is sometimes necessary to use the device class
locally. The notion of local access is completely compatible
with the device server model due to the adoption of OOP
techniques. Device classes can be used locally (as opposed
to remotely) in a number of ways -

" as a superclass,

" as a subclass,

e as a local sub-object within a class.

" or as a local object in an application,

This allows applications which have to run close to the
hardware because of performance or hardware constraints,
to profit from existing device classes.

3.10 Network Access

Network access is implemented in the device server model
in the root class. This is achieved by a remote proce
dure call. The de facto industry standard from SUN
the NFS /RPC has been chosen because of its wide avail
ability.

Two types of network access are provided -

,, device,

" administrator.

For this reason there are two api 's. The device a.pi is de
scribed below. The administrator's a.pi supports a kind
of meta-control to device servers. Using the administra
tor's interface various kinds of useful information can be
obtained about the device server e.g. the devices being
served, and the number of clients per device. The admin
istrators interface also supports a number of commands
e.g. shutting down the server, restarting the server and
reconfiguring the server.

Parameters passed between clients and server have to be
converted to network format (for NFS/RPC this is XDR
format) and back again. These tasks are known respec
tively as serialising and deserialising. A central library of
serialising and deserialising routines is maintained as part
of the root class. This way device server programmers do
not have to learn how to serialise and deserialise data.

3.11 The Application Programmers In
terface

A device server client accesses devices using the application
programmer's interface (ap1). In order to improve perfor
mance the device server api is based on the file paradigm.
The file paradigm consists of opening the file, reading
and/or writing to the file and then closing the file. The
device server a.pi paradigm consists of -

1. importing the device using

dev_import (name,ds_handle,access,error)
char •name;
devserver •ds_handle;
long access;
long •error;

2. putting and/or getting commands to the device us
ing

dev_putget (ds_handle,cmd,argin,intype,
argout,outtypo,error)

devserver ds_handle;
short cmd;
DevArgument •argin;
DevType intype;
DevArgument *argout;
DevType outtype;
long •error;

3. freeing the device using

dev_free (ds_handle,error)
devserver ds_handle;
long •error;

Using these three calls a client can execute any command
on a device. The client uses a local procedure call to access
these functions. The local call is then converted into a
network call by the remote procedure call mechanism (ref.
[5]). Each call is a blocking synchro11ous call. This
means that the client waits until the call returns before
continuing. If the server doesn't respond or the remote
ma.chine is down a timeout will ocurr.

Variations of these three calls supplement the basic de
vice server a.pi. For example a vector version of the above
calls exists which takes a list of devices and a list of com
mands to be executed, thereby reducing the network over
head incurred by the rpc. Work is also continuing on an
asynchronous version of the dev _putget () call which will
dispatch the command and then return immediately. The
response will be queued and returned to the client when it
is ready to receive it.

4 Example

The device server model has been successfully used at the
ESRF to solve the problem of device access and device

517

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS1991, Tsukuba, Japan JACoW Publishing

ISBN: 978-3-95450-254-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS1991-S14OOP04

Object Oriented Programming & Techniques

S14OOP04

517

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
19
92
/2
0
24
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

control for the entire injection/extraction part of the
machine. A typical example of a device class is the Pow
ersupply class.

4.1 The Powersupply

At the ESRF one of the most common device types is the
powersupply. There are over 300 powersupplies from
over 10 different suppliers. Hardware interfacing is either
via a serial line or a G64 bus. Each supplier uses a different
register description or protocol.

Using the device server model it has been possible to
hide these hardware software differences between the dif
ferent powersupplies. Applications see a generic powersup
ply which behaves identically for all powersupplies. The
generic powersupply is a device in the device server model.
All powersupplies belong to the same superclass - the
PowerSupplyClass.

The PowerSupplyClass defines a partial structure for
each PowerSupply device/object. Every subclass of the
PowerSupplyClass uses the fields defined in the Powersup
ply partial structure. This way all powersupply classes
have the same definitions and are easier to implement, un
derstand and maintain.

The PowerSupplyClass is what is known as a container
class i.e. it is never instantiated - its job is

• to provide a framework within which to implement
subclasses,

• serve as a receptacle for common powersupply related
methods.

Each new powersupply class is implemented as a sub
class of the PowerSupplyClass. The convention has been
adopted to name the powersupply classes after the sup
plier. Figure 2 shows a synoptic of the powersupply class
hierarchy for some of the powersupplies involved in the
injection/extraction process.

In order to standardise the behaviour of all powersup
plies a set of commands have been defined which are im
plemented in every powersupply class. These are

o DevOff, switches the powersupply off.

• Dev On, switches the powersupply on.

• DevReset, resets the powersupply after a fault con
dition has ocurred.

• DevState, returns the state of the powersupply as a
short integer.

• DevStatus, returns the state of the powersupply as
an ASCII string.

Cll DevSetValue, sets the principal setpoint (current)
to the specified value.

" DevReadValue, returns the last set value and the
latest read value.

Figure 2: Class Structure for Injection/Extraction Power
supplies at the ESRF

o DevUpdate, returns the state, set value and read
value.

For more complex powersupplies additional commands can
be added to this list e.g. DevStandby.

The approach to define an generic device of type power
supply has proved very powerful for applications. The ap
plication programmers can develop their applications com
pletely independantly of the device class. This way both
programs can be developed simultaneously and be ready
at the same time.

5 The OOP Experience

0 OP techniques were chosen for the device server model
partly because the problem (a general device access sys
tem) falls in the scope of problems which can be solved by
OOP techniques; partly as an experiment in OOP to see
what it really implies.

From the experience with the device server model the
following advantages could be identified ;

518

• the possibility to inherit code from existing classes,

• the logical structure it imposes on classes,

• the fact that it reduces the coupling between code to
a minimum.

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS1991, Tsukuba, Japan JACoW Publishing

ISBN: 978-3-95450-254-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS1991-S14OOP04

S14OOP04

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
19
92
/2
0
24
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

518 Object Oriented Programming & Techniques

Not all experience with OOP has been positive how
ever. One of the ma.in drawbacks with OOP is the time
it takes beginners to learn. Our experience has shown us
that even though modelling the world in terms of objects
might come naturally to many people programming with
classes does not. It takes longer for programmers having
no experience with OOP techniques to become produc
tive than it takes programmers to become productive in a
project using traditional (procedural-based) techniques.

6 Standardisation

Device servers can be regarded as a new generation of
device drivers. They provide device independant access
within a distributed computing environment. The device
server model could be used as a basis for a standard ·way
of solving device access in a distributed environment. The
main areas that requires standardisation are the network
protocol and the class hierarchies.

The present implementation of the device servers has de
fined a device access as consisting of a command with one
input argument and one output argument. In order
to arrive at a standard protocol the commands and the
data types to be supported by the standard would need
to be defined. Doing this could lead to a a standard access
mechanism for devices in a distributed environment (much
in the same way that the Xl 1 protocol is a standard in
graphics programming in a distributed environment).

Standardisation work is also required for class hierar
chies. A standard superclass should be defined for each
of the basic device types. The standard fields to be used
by each member of a certain superclass will thereby be de
fined. A minimum set of commands to be implemented by
each member of the same superclass need to be defined a.s
well. This will ensure consistent behaviour of all devices
belonging to the same superclass and maximum reusage of
code.

7 Conclusion

In this paper a model, called the device server model,
has been presented for solving the problem of device ac
cess and control faced by all control systems. Object
Oriented Programming techniques were used to achieve
a powerful yet flexible solution. The model provides a so
lution to the problem which hides device dependancies.
It defines a software framework which has to be respected
by implementors of device classes - this is very useful for
developing groupware. The decision to implement re
mote access in the root class means that device servers
can be easily integrated in a distributed control system.

A lot of the advantages and features of the device server
model a.re due to the adoption of OOP techniques. The
ma.in conclusion that can be drawn from this pa.per is that

1. the device access and control problem is adapted to
being solved with OOP techniques,

REFERENCES

519

2. OOP techniques offer a distinct advantage over tradi
tional programming techniques for solving the device
access problem.

8 Acknowledgements

The authors would like to express their thanks to the
first generation of device server programmers (who pro
grammed valiantly on even before the doc existed) -
D.Ca.rron, P.Makijarvi, T.Mettala, C.Penel, G.Pepellin,
M.Peru, B.Regad, B.Scaringella, M.Schofield, E.Taurel,
R.Wilcke and H.Witsch. As the first generation of device
server programmers they tested the device server model on
a wide variety of devices and provided valuable feedback on
the validity of ~he device server model. The device servers
they wrote were used to build the ESRF machine control
system and the first beamline control system.

References

[l] J .L. Lada.re, "Overview of the European Synchrotron
Light Source" in IEEE Particle Accelerator Confer
ence, Washington, D.C., March 1987, pp. 417-421.

[2] "Off the MAP" in Scientific American, August 1991,
pg. 100.

[3] P.J .Asente and R.R.Swick, X Window System Toolkit,
Digital Press, 1990.

[4] K.E.Gorlen, S.M.Orolow and P.S.Plexico, Data Ab
straction and Object Oriented Programming in C++,
John Wiley & Sons, 1990.

{5] A.D.Birell and B.J .Nelson, "Implementing Remote
Procedure Calls" in A CM Transactions on Computer
Systems 2(1), February 1987.

Unix is a trademark of AT&T in the USA and other countries.

HP-UX is a trademark of Hewlett Packard, Corp.

SunOS is a trademark of SUN Microsystems, Inc.

059 is a. trademark of Microwa.re Systems Corp., USA.

Motif is a trndemark of the Open Software Foundation, Inc.

NFS is a trademark of SUN Microsystems, Inc.

XDR is a trademark of SUN Microsystems, Inc.

The X Window System is a trndema.rk of the M.!.T.

RTDB is a trademark of Automated Technology Associates, Indi
anapolis, USA

Oracle is a trademark of Oracle Corp.

Ethernet is a trademark of Xerox Corp.

All other trademarks or registered tra.dema.rka a.re of their respec
tive companies. ESRF <lisclaims any responsabillty for specifying
which marks are owned by which companies or organi'ZatioM.

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS1991, Tsukuba, Japan JACoW Publishing

ISBN: 978-3-95450-254-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS1991-S14OOP04

Object Oriented Programming & Techniques

S14OOP04

519

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
19
92
/2
0
24
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

