
Multi-processor Network Implementations in Multibus II and 
VME 

Charlie BRIEGEL, Fennilabt 
P.O. Box 500, Batavia, IL 60510, USA 

Abstract 

ACNET (Fennilab Accelerator Controls Network), a proprietary 
network protocol, is implemented in a multi.processor 
configuration for both Multibus II and VME. The 
implementations are contrasted by the bus protocol and software 
design goals. 

The Multibus II implementation provides for multiple 
processors nmning a duplicate set of tasks on each processor. For 
a network connected task, messages are distributed by a network 
round-robin scheduler. Further, messages can be stopped, 
continued. or re-routed for each task by user-callable commands. 

The VME implementation provides for multiple processors 
nmning one task across all processors. The process can either be 
fixed to a particular processor or dynamically allocated to an 
available processor depending on the scheduling algorithm of the 
multi-processing operating system. 

I. INTRODUCTION 

The motivation for a multi-processor platform in 
Fermilab's Accelerator Controls Group was to support our 
extensive commitment to CAMAC. The goal was to provide 
a replacement for PDPl 1 front-ends improve the effective 
utilization of the CAMAC serial link. Since CAMAC can 
have only one master, the link hardware allows ownership to 
be passed between cooperating processors. One of the 
requirements for this configuration was to implement ACNET 
communications for several duplicate processors running 
identical set of tasks. Thus, processors can be transparently 
added to the configuration with a corresponding increase in 
performance. This requirement provided the impetus for a 
multi-processor network connection to the existing network. 
The VME implementation provides support of multi-processor 
networks by using MTOS-UX MP (multi-processor version) 
operating system for transparent distribution of tasks among a 
set of processors. 

t Operated by Universities Research Association for the 
Department of Energy. 

295 

II. ACNET OVERVIEW 

ACNET (Accelerator Controls Network) is Fermilab's 
proprietary network protocol implemented in 1980. It consists 
of both a software protocol and a .calling sequence 
specification. 

The software protocol consists of a 9 word header 
(figure I) preceding each message and provides a specification 
for the routing of messages between tasks. The protocol 
maintains a connection between cooperating tasks through a 
status reply and/or cancel messages. These notifications 
enable tasks and the network to maintain connectivity and 
cleanup network resourees with minimal overhead. 

The calling sequence provides a consistent user 
interface across heterogeneous machines and enables a 
request/reply paradigm for communication. Both 
asynchronous communications (traps, signals, or event flags) 
and synchronous communications (polling, wait, or wait with 
time-out) are supported by the calling sequence. 

This calling sequence has enabled Fennilab to isolate 
effects to users due to changes in either the software or 
hardware protocol. While the implementation imposes 
inherent software costs, there is an advantage in providing a 
consistent layered approach for other software protocols. 

The proprietary protocol does not restrict the use of 
standard protocols. For instance, by tunneling or 
encapsulating software protocols, ACNET has been 
implemented through a DECNET protocol and will be 
implemented with TCP/IP in the near future. The primary 
reason for not implementing a standard protocol stack has been 
the lack of support by vendors for the current set of 
heterogeneous processors and operating systems at Fennilab. 

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS1991, Tsukuba, Japan JACoW Publishing

ISBN: 978-3-95450-254-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS1991-S08NC02

Network and Communication

S08NC02

295

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
19
92
/2
0
24
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



Flap Control 

0 

Destination Destination 
Node I.AN 

Sowce Sou:rce 
Node LAN 

Deatinalion 
Task 

Namo 

P&eket Sequenco So= Tulc m 
orChccbwn 

Molaap Length 

Reque.t/Unsollclted Msg 
Header 

Flq:• Control 

Doatination 
Node 

SoUICe 

Paclcct Seqµonoo 
orOtccbwn 

Task 
Nmno 

Destination 
Task ID 

Mm111geLength 

Reply Msg 
Header 

Figure I 

ill. MULTIBUS II 

A. Configuration 

The Multibus II bus with multiple Intel 386s running 
MTOS-UX SP (single processor version of the operating 
system) is the platform for this implementation. The crate 
contains an IBM/PC as the bus monitor which supports 
diagnostics, rebooting, and console emulation. Each of the 
Intel 386 processors has a daughter board supporting the 
CAMAC link directly. 

Included in the configuration is a Token Ring board 
for communications. The board has an 8 MHz Intel 186 with 
a Token Ring daughter board attached to the ADMA controller 
of the processor board. The board implements the 
TMS380Cl6/04 chipset at either 4 or 16 Mbps and will be 
commercially available in the near future. 

B. Software Implementation 

To effectively communicate across a Multibus II 
backplane, each board contains a message passing co-processor 
and a software protocol called "transport" to provide a 
messaging facility similar to a LAN protocol. The Token 
Ring board's software takes an incoming transport message and 
synchronously transmits it onto the Token Ring. Upon 
receiving a Token Ring frame, a transport message containing 
the frame is sent to the appropriate processor. The distribution 
of a message is based on a connected task name for a given 
processor, the node number, and the message type. 

ACNET requests are delivered in round-robin order. 
When a task called 'TSKA' connects to the network from 

CPU!, a transport message provides this information to the 
Token Ring processor. Another processor, CPU2, can connect 
with the same task name, 'TSKA'. Since replies must go to 
the originating request's processor, only requests are distributed 
in this way. The ACNET header's source node is altered to 
remember the specific processor which initiated the request so 
the reply is routed correctly. 

ACNET header contains a 16-bit word to specify a 
Ian/node number for both the destination and the source of the 
message. For this implementation. a set of node numbers are 
used as a logical nodes. One node number is used as a global 
logical node and implies the request can be distributed to any 
of the available processors which have the connected task 
specified in the ACNET header. For each processor, a specific 
logical node enables a request to be directed to the 
corresponding processor. 

When a task is terminated, a cancel message is sent to 
delete each outstanding request. Since the requests are 
distributed in round-robin order, the Token Ring processor 
needs to deliver this cancel to the same processor which 
received the original request. Since cancels are infrequent and 
can be uniquely matched to original request through the 
ACNET header, the Token Ring processor broadcasts the 
message to all processors. 

The byte orientation on the Token Ring wire was 
dictated by early implementations on VME, UNIBUS and 
QBUS platforms. The TMS380 chipset enables either 
Motorola or Intel logic interface which implies correct text, 
while integers are byte swapped. These early controllers used 
the Motorola interface and mapped the Big Endian format 
directly to the little endian processor bus. The result was an 
automatic byte swap. While this appeared to optimize our. 
message format, the Multibus II Token Ring board using an 
Intel interface must byte swap each message. 

The ACNET software for Multibus II and VME 
processors is written in "C" and is ported between the two 
platforms. The portable code is conditionally compiled to 
distinguish the use of transport as a vehicle to and from the 
Token Ring board. 

C. ACNET extensions 

Three new calls were added to aid in flow control. 
The round-robin scheduling of requests could be made 
ineffective if requests with greater life-times funneled into the 
same processor. The processor could be starved by servicing 
these requests with multiple replies while other processors 
would be relatively idle. 

If such a case can be detected by the user, a NTSTOP 
call can be executed which provides a temporary block for 
future requests to be delivered to this task's processor. A 
subsequent NTUSTP call will resume normal round-robin 
schedule. 

Since Multibus II implements a flexible messaging 
facility, a request can be re-routed to another processor based 

296 

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS1991, Tsukuba, Japan JACoW Publishing

ISBN: 978-3-95450-254-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS1991-S08NC02

S08NC02

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
19
92
/2
0
24
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

296 Network and Communication



on a user statistic, memory utilization, or idle time. The user 
can execute the NTMREQ call which will re-route the message 
to a specified processor. It is the user's responsibility to 
prevent a message storm on the bus. 

IV. VME 

A. Configuration 

The test configuration used two Motorola 68020s 
running MTOS-UX MP operating system in a VME 
backplane. The platform implements one of the following 
three Token Ring boards: a Fermilab designed board at 4 
Mbps, a Proteon pl542 at 4 Mbps, or a Formation fvl600 at 
4/16 Mbps. All of the boards use the TMS380 family of 
Token Ring chipsets. 

B. Software Implementation 

The same ACNET software package implemented for 
MTOS-UX SP is used for the MP version. The operating 
system allows multiple tasks to run concurrently and 
transparently on multiple processors. A copy of the operating 
system is placed on each processor to improve performance. 
The operating system allows the user to specify the processor 
a task must run on or whether the task can be globally run on 
any of the available processors. If the task is global, the user 
must make modifiable data accessible to all processors. In the 
case of the test configuration, the operating system's tables, 
global task's data, and stack was contained in a shared memory 
segment accessed through the VME bus. Thus, performance is 
decreased due to the multi-processing operating system's 
overhead and each global task's data access over the VME bus. 

V. PERFORMANCE 

In a multi-tasking operating system, many factors 
determine the performance of the network to deliver messages 
to a task for useful work. Each of these implementations 
provide adequate performance with several opportunities for 
improvements. The Multibus II configuration can deliver 200 
byte messages at approximately 110 messages per second for 
one processor and 180 messages per second for two processors. 
This measurement is for a task communicating with itself and 
in the case of two processors the messages are distributed to 

two duplicate tasks on separate processors. 
The VME configuration was tested with one global 

task initiating a 200 byte request to a separate global task in 
the same VME backplane. The receiver of the request then 

sent an echoed reply of equal length. A single processor 
running MTOS-UX SP generated approximately 200 messages 
per second. A single processor running MTOS-UX MP 
generated approximately 160 messages per second. A dual 
processor running MTOS-UX MP generated approximately 
170 messages per second. As expected, the additional 
processors should not improve network performance in such an 
architecture, but could provide additional compute power with 
ACNET communications. 

The VME test was implemented with the ACNET 
network task running on the first processor. The same test 
was attempted with ACNET running as a global task on two 
processors. The result generated approximately 8 messages per 
second. The second processor had the Token Ring interrupts 
masked off. I believe the tasks were thrashing from processor 
to processor, but interrupt delivery to a task could only be 
delivered to the same processor which received the hardware 
interrupt. While further investigation is required, the results 
caution the user of MP to understand the system architecture or 
unusual results could occur. 

Improvements in performance can be implemented 
with the following techniques: 

1. Implement multiple Token Ring controllers. 
2. Upgrade processors. 
3. Overlap Token Ring 1/0 with transport 1/0. 
4. Eliminate unnecessary copy of received frames. 
5. Optimize C code. 
6. Upgrade the Token Ring to 16 Mbps. 
7. Upgrade the TMS380Cl6/04 fmnware. 

VI. CONCLUSIONS 

The Multibus II implementation has been running at 
Fermilab's Central Detector Facility. While the system has 
limited utilization compared to Fermilab Accelerator Controls, 
it has been valuable for detecting bugs and predicting 
performance characteristics. In particular, the round-robin 
scheduling with user invoked flow control appears to be 
adequate and manageable. 

The throughput of the Token Ring board is a concern. 
Since the Token Ring software must byte swap each message, 
much of the performance is tied to the processor. The board 
will soon be available with a 16 MHz Intel 186 and should 
improve performance. Further, the software to enable multiple 
Token Ring boards on the same Multibus II backplane is 
easily implemented. Unfortunately, the ability to allocate 
these resources for incoming messages is a management 
problem without a stable solution. 

Currently, their are no multi-processor 
implementations of MTOS-UX MP. While the operating 
system provides a high degree of transparency, the 
improvement in performance is difficult to quantify. In 
general, a master/slave or co-processor configuration with 
simple mailboxes is more predictable and manageable for real
time processing. 

297 

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS1991, Tsukuba, Japan JACoW Publishing

ISBN: 978-3-95450-254-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS1991-S08NC02

Network and Communication

S08NC02

297

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
19
92
/2
0
24
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



While both implementations use MTOS-UX as its 
operating system, the multi-processor version is inefficient for 
Multibus II. The operating system's global tables implies a 
time consuming access in Multibus II. The Multibus II 
implementation does enable tasks to be statically distributed 
across multiple processors. A VME implementation to enable 
duplicate tasks distributed across multiple processors requires 
mutual exclusion techniques on network structures and 
additional software. Thus, these two multi-processor network 
implementations provides a non-competitive solution solving 
two different problems. 

Vil.ACKNOWLEDGEMENTS 

Multibus II Token Ring board was designed and built 
by Jim Zagel, John Smolucha, and Bob Marquart. Transport 
protocol for the Intel 186 was developed by John Smolucha 
and transport protocol for MTOS-UX was developed by Mike 
Glass and Bill Marsh. Kevin McGuire and Duane Voy (SSC) 
generated MTOS-UX MP for the MVME133 board. 

VIII. REFERENCES 

[l] Briegel, C., Johnson G., and Winterowd, L. (1989). The 
Fermilab ACNET Upgrade, Proceedings of the International 
Conference on Accelerator and Large Experimental Physics 
Control Systems, pp. 235-238 

[2] Glass, M., Zagel., J., Smith, P., Marsh. W., and Smolucha, J., 
(1989). The Upgraded Tevatron Front End, Proceedings of the 
International Conference on Accelerator and Large 
Experimental Physics Control Systems, pp. 87-92 

298 

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS1991, Tsukuba, Japan JACoW Publishing

ISBN: 978-3-95450-254-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS1991-S08NC02

S08NC02

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
19
92
/2
0
24
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

298 Network and Communication


