Industrial Control
Paper Title Page
S07IC01 Interfacing Industrial Process Control Systems to LEP/LHC 269
 
  • M. Rabany
    CERN, Geneva, Switzerland
 
  Modern industrial process control systems have developed to meet the needs of industry to increase the production while decreasing the costs. Although particle accelerators designers have pioneered in control systems during the seventies, it has now become possible to them to profit of industrial solutions in substitution of, or in complement with the more traditional home made ones. Adapting and integrating such industrial systems to the accelerator control area will certainly benefit to the field in terms of finance, human resources and technical facilities offered off-the-shelf by the widely experienced industrial controls community; however this cannot be done without slightly affecting the overall accelerator control architecture. The paper briefly describes the industrial controls arena and takes example on an industrial process control system recently installed at CERN to discuss in detail the related choices and issues.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS1991-S07IC01  
About • Received ※ 11 November 1991 — Accepted ※ 20 November 1991 — Issued ※ 04 December 1992  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
S07IC02 SPS/LEP Beam Transfer Equipment Control Using Industrial Automation Components 274
 
  • A. Aimar, J.-L. Bretin, G. Bérard, E. Carlier, J. Dieperink, M. Laffin, V. Mertens, H. Verhagen
    CERN, Geneva, Switzerland
 
  Several control systems for SPS and LEP beam transfer equipment have to be commissioned in the near future. Tools for fast software development, easy maintenance and modifications, compliance with industrial standards, and independence of specific suppliers are considered to be essential. A large fraction of the systems can be realized using off-the-shelf industrial automation components like industrial I/O systems, programmable logic controllers, or diskless PCs. Specific electronics built up in G-64 can be integrated. Diskless systems running UNIX and X Windows are foreseen as process controllers and local access media.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS1991-S07IC02  
About • Received ※ 11 November 1991 — Accepted ※ 20 November 1991 — Issued ※ 04 December 1992  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
S07IC03 EPICS Architecture 278
 
  • L.R. Dalesio, A.J. Kozubal
    LANL, Los Alamos, New Mexico, USA
  • M.R. Kraimer
    ANL, Lemont, Illinois, USA
 
  Funding: Work at LANL supported and funded under the Department of Defense. US Army Strategic Defense Command. under the auspices of the Department of Energy.<br /> Work at ANL supported by U.S. Dept. of Energy, Office of Basic Energy Sciences, under Contract No W-31-109-ENG-38.
The Experimental Physics and Industrial Control System (EPICS) provides control and data acquisition for the experimental physics community. Because the capabilities required by the experimental physics community for control were not available through industry, we began the design and implementation of EPICS. It is a distributed process control system built on a software communication bus. The functional subsystems, which provide data acquisition, supervisory control, closed loop control, archiving, and alarm management, greatly reduce the need for programming. Sequential control is provided through a sequential control language, allowing the implementer to express state diagrams easily. Data analysis of the archived data is provided through an interactive tool. The timing system provides distributed synchronization for control and time stamped data for data correlation across nodes in the network. The system is scalable from a single test station with a low channel count to a large distributed network with thousands of channels. The functions provided to the physics applications have proven helpful to the experiments while greatly reducing the time to deliver controls.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS1991-S07IC03  
About • Received ※ 11 November 1991 — Accepted ※ 20 November 1991 — Issued ※ 04 December 1992  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
S07IC04 A Front-End System for Industrial Type Controls at the SSC 283
 
  • D.J. Haenni
    SSCL, Dallas, TX, USA
 
  The SSC control system is tasked with coordinating the operation of many different accelerator subsystems, a number of which use industrial type process controls. The design of a high-performance control system front end is presented which serves both as a data concentrator and a distributed process controller. In addition it provides strong support for a centra1ized control system architecture, allows for regional control systems, and simplifies the construction of inter-subsystem controls. An implementation of this design will be discussed which uses STD-Bus for accelerator hardware interfacing, a time domain multiplexing (TDM) communications transport system, and a modified reflective memory interface to the rest of the control system.
Operated by the Universities Research Association, Inc., for the U.S. Department of Energy under Contract No. DE-AC02-89ER40486.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS1991-S07IC04  
About • Received ※ 11 November 1991 — Accepted ※ 20 November 1991 — Issued ※ 04 December 1992  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
S07IC05 The Influence of Industrial Applications on a Control System Toolbox 287
 
  • P.N. Clout
    VISTA, Los Alamos, NM, USA
 
  V system is as an open, advanced software application toolbox for rapidly creating fast, efficient and cost-effective control and data-acquisition systems. V system’s modular architecture is de­signed for single computers, networked computers and worksta­tions running under VAX/VMS or VAX/ELN. At the heart of Vsystem lies Vaccess, a user extendible real-time database and library of access routines. The application database provides the link to the hardware of the application and can be organized as one database or separate databases installed in different comput­ers on the network. Vsystem has found application in charged ­particle accelerator control, tokamak control, and industrial re­search. as well as its more recent industrial applications. This paper describes the broad features of Vsystem and the influence that recent industrial applications have had on the software.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS1991-S07IC05  
About • Received ※ 11 November 1991 — Accepted ※ 20 November 1991 — Issued ※ 04 December 1992  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)