Distributed and Parallel Processing
Paper Title Page
S09DPP01 Concurrent Control System for the JAERI Tandem Accelerator 333
 
  • S. Hanashima, K. Horie, T. Shoji, Y. Tsukihashi
    JAERI, Tokai-mura, Japan
 
  Concurrent processing with a multi-processor system is introduced to the particle accelerator control system region. The control system is a good application in both logical and physical aspects. A renewal plan of the control system for the JAERI tandem accelerator is discussed.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS1991-S09DPP01  
About • Received ※ 11 November 1991 — Accepted ※ 20 November 1991 — Issued ※ 04 December 1992  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
S09DPP02 Palantiri: A Distributed Real-Time Database System for Process Control 336
 
  • B.J. Tummers, W. Heubers
    NIKHEF-K, Amsterdam, The Netherlands
 
  The medium-energy accelerator MEA, located in Amsterdam, is controlled by a heterogeneous computer network. A large real-time database contains the parameters involved in the control of the accelerator and the experiments. This database system was implemented about ten years ago and has since been extended several times. In response to increased needs the database system has been redesigned. The new database environment, as described in this paper, consists out of two new concepts: (1) A Palantir which is a per machine process that stores the locally declared data and forwards au non local requests for data access to the appropriate machine. It acts as a storage device for data and a looking glass upon the world. (2) Golems: working units that define the data within the Palantir, and that have knowledge of the hardware they control. Applications access the data of a Golem by name (which do resemble Unix path names). The Palantir that runs on the same machine as the application handles the distribution of access requests. This paper focuses on the Palantir concept as a distributed data storage and event handling device for process control.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS1991-S09DPP02  
About • Received ※ 11 November 1991 — Accepted ※ 20 November 1991 — Issued ※ 04 December 1992  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
S09DPP03 Intelligent Trigger by Massively Parallel Processors for High Energy Physics Experiments 340
 
  • F. Rohrbach
    CERN, Geneva, Switzerland
  • G. Vesztergombi
    KFKI, Budapest, Hungary
 
  The CERN-MPPC collaboration concentrates its effort on the development of machines based on massive parallelism with thousands of integrated processing elements, arranged in a string. Seven applications are under detailed studies within the collaboration: three for LHC, one for SSC, two for fixed target high energy physics at CERN and one for HDTV. Preliminary results are presented. They show that the objectives should be reached with the use of the ASP architecture.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS1991-S09DPP03  
About • Received ※ 11 November 1991 — Accepted ※ 20 November 1991 — Issued ※ 04 December 1992  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)