Paper | Title | Page |
---|---|---|
S17AIA01 | Development of a Diagnostic System for Klystron Modulators Using a Neural Network | 558 |
|
||
The diagnostic system for klystron modulators using a neural network has been developed. Large changes in the voltage and current of the main circuit in a klystron modulator were observed just several ten milli-seconds before the modulator experienced trouble. These changes formed a peculiar pattern that depended on the parts with problems. Diagnosis was possible by means of pattern recognition. The recognition test of patterns using a neural network has shown good results. This system, which is built in a linac control system, is presently being operated so as to collect new trouble patterns and to carry out tests for practical use. | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS1991-S17AIA01 | |
About • | Received ※ 11 November 1991 — Accepted ※ 20 November 1991 — Issued ※ 04 December 1992 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
S17AIA02 | Diagnostic Expert System in the RF Linac | 562 |
|
||
A prototype diagnostic expert system (ES) was developed for the Photon Factory 2.5-GeV electron/ positron LINAC injector system. The ES has been on-lined with the conventional linac computer network for receiving real data. This project was undertaken in an attempt to reduce the linac operator’s mental workload, diagnosis duties, and to explore Artificial Intelligence (AI) technologies. The outlook for ES and its problems, and what has been achieved are outlined in this presentation. | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS1991-S17AIA02 | |
About • | Received ※ 11 November 1991 — Accepted ※ 20 November 1991 — Issued ※ 04 December 1992 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
S17AIA03 | GLAD: A Generic Lattice Debugger | 566 |
|
||
Funding: Work supported by Department of Energy contract DE-AC03-76SF00515. Today, numerous simulation and analysis codes exist for the design, commission, and operation of accelerator beam lines. There is a need to develop a common user interface and database link to run these codes interactively. This paper will describe a proposed system, GLAD (Generic LAttice Debugger), to fulfill this need. Specifically, GLAD can be used to find errors in beam lines during commissioning, control beam parameters during operation, and design beam line optics and error correction systems for the next generation of linear accelerators and storage rings. |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS1991-S17AIA03 | |
About • | Received ※ 11 November 1991 — Accepted ※ 20 November 1991 — Issued ※ 04 December 1992 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
S17AIA04 | Development of Operator Thinking Model and its Application to Nuclear Reactor Plant Operation System | 570 |
|
||
At first, this paper presents the developing method of an operator thinking model and the outline of the developed model In next, it describes the nuclear reactor plant operation system which has been developed based on this model. Finally, it has been confirmed that the method described in this paper is very effective in order to construct expert systems which replace the reactor operator’s role with AI (artificial intelligence) systems. | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS1991-S17AIA04 | |
About • | Received ※ 11 November 1991 — Accepted ※ 20 November 1991 — Issued ※ 04 December 1992 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |