Paper | Title | Page |
---|---|---|
S03SRD04 | Standards and the Design of the Advanced Photon Source Control System | 116 |
|
||
Funding: Work supported by U.S. Department of Energy, Office of Basic Energy Sciences under Contract No. W-31-109-ENG-38. The Advanced Photon Source (APS), now under construction at Argonne National Laboratory (ANL), is a 7 GeV positron storage ring dedicated to research facilities using synchrotron radiation. This ring, along with its injection accelerators is to be controlled and monitored with a single, flexible, and expandable control system. In the conceptual stage the control system design group faced the challenges that face all control system designers: (1) to force the machine designers to quantify and codify the system requirements, (2) to protect the investment in hardware and software from rapid obsolescence, and (3) to find methods of quickly incorporating new generations of equipment and replace obsolete equipment without disrupting the existing system. To solve these and related problems, the APS control system group made an early resolution to use standards in the design of the system. This paper will cover the present status of the APS control system as well as discuss the design decisions which led us to use industrial standards and collaborations with other laboratories whenever possible to develop a control system. |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS1991-S03SRD04 | |
About • | Received ※ 11 November 1991 — Accepted ※ 20 November 1991 — Issued ※ 04 December 1992 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
S07IC03 | EPICS Architecture | 278 |
|
||
Funding: Work at LANL supported and funded under the Department of Defense. US Army Strategic Defense Command. under the auspices of the Department of Energy.<br /> Work at ANL supported by U.S. Dept. of Energy, Office of Basic Energy Sciences, under Contract No W-31-109-ENG-38. The Experimental Physics and Industrial Control System (EPICS) provides control and data acquisition for the experimental physics community. Because the capabilities required by the experimental physics community for control were not available through industry, we began the design and implementation of EPICS. It is a distributed process control system built on a software communication bus. The functional subsystems, which provide data acquisition, supervisory control, closed loop control, archiving, and alarm management, greatly reduce the need for programming. Sequential control is provided through a sequential control language, allowing the implementer to express state diagrams easily. Data analysis of the archived data is provided through an interactive tool. The timing system provides distributed synchronization for control and time stamped data for data correlation across nodes in the network. The system is scalable from a single test station with a low channel count to a large distributed network with thousands of channels. The functions provided to the physics applications have proven helpful to the experiments while greatly reducing the time to deliver controls. |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS1991-S07IC03 | |
About • | Received ※ 11 November 1991 — Accepted ※ 20 November 1991 — Issued ※ 04 December 1992 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |