Author: Hendrickson, L.
Paper Title Page
S12FC02 Generalized Fast Feedback System in the SLC 414
 
  • L. Hendrickson, S. Allison, T. Gromme, T.M. Himel, K.E. Krauter, R.C. Sass, H. Shoaee
    SLAC, Menlo Park, California, USA
  • F. Rouse
    UCD, Davis, California, USA
 
  Funding: Work supported by Department of Energy contract DE-AC03-76SF00515.
A generalized fast feedback system has been developed to stabilize beams at various locations in the SLC. The system is designed to perform measurements and change actuator settings to control beam states such as position, angle and energy on a pulse to pulse basis. The software design is based on the state space formalism of digital control theory. The system is database-driven, facilitating the addition of new loops without requiring additional software. A communications system, KISNet, provides fast communications links between microprocessors for feedback loops which involve multiple micros. Feedback loops have been installed in seventeen locations throughout the SLC and have proven to be invaluable in stabilizing the machine.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS1991-S12FC02  
About • Received ※ 10 October 1991 — Accepted ※ 02 January 1992 — Issued ※ 04 December 1992  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
S13MMI13 Correlation Plot Facility in the SLC Control System 493
 
  • L. Hendrickson, S. Clark, N. Phinney, L. Sanchez-Chopitea
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by Department of Energy contract DE-AC03-76SF00515.
The Correlation Plot facility is a powerful interactive tool for data acquisition and analysis throughout the SLC. This generalized interface allows the user to perform a range of operations or machine physics experiments without the need for any specialized analysis software. The user may step one or more independent parameters, such as magnet or feedback setpoints, while measuring or calculating up to 160 other parameters. Measured variables include all analog signals available to the control system, as well as calculated parameters such as beam size, luminosity, or emittance. Various fitting algorithms and display options are provided. A software-callable interface has been provided so that a host of applications can call this package for analysis and display. Such applications regularly phase klystrons, measure emittance and dispersion, minimize beam size, and maintain beam collisions at the interact ion point.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS1991-S13MMI13  
About • Received ※ 11 November 1991 — Accepted ※ 20 November 1991 — Issued ※ 04 December 1992  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)