
SOFTWARE DESIGN OF THE SCHONLAND 6MV EN-TANDEM
ACCELERATOR CONTROL SYSTEM

R.D. Maclear, S.H. Connell, A.H. Andeweg, J.P.F. Sellschop, SRCNS, Johannesburg, South Africa
M.E. Hogan, NAC, Faure, South Africa

H.F. Weehuizen, Massey University at Wellington, Wellington, New Zealand

Abstract

Currently the 6MV EN-Tandem van der Graaff accelerator
at the Schonland Research Centre for Nuclear Sciences
is being upgraded for computer control. A distributed,
network based control architecture has been implemented
and successfully installed to control two sections of the
accelerator. A graphical user interface (GUI) is being
designed which is both didactic and easy to use. The entire
control system software has been written to use OS/2 and
exploits the multi-threaded and real-time nature of the
operating system. Source code has been written in C and
C++. A client-server type architecture is used to control
electronic components to provide dynamic prioritisation
of control instructions and monitoring events. A relational
database is used to store all system and control variables
to facilitate upgrading needs. The modular nature of the
control system allows minimal down time when installing
new sections for computer control. We present here the
design concepts, a status report and first results of the
accelerator control system.

1 INTRODUCTION

The Schonland Research Centre for Nuclear Sciences
operates a 6MV EN-Tandem van der Graaff particle ac-
celerator. There are two ion sources capable of producing
both light and heavy particle beams. The Duoplasmatron
ion source is a gas ion source producing proton and alpha
ion beams. The 860A sputter ion source is used to produce
heavy ion beams of almost all elements of the periodic
table. The Centre is also in the process of developing and
installing an Accelerator Mass Spectrometer facility. The
Centre is involved, not only in physics experimental work,
but also in routine geological, biological and medical
sample trace analysis using an Ion Microprobe [1]. Any
facility that is involved in this broad spectrum of work
requires a stable, user friendly accelerator control system.
A multiple PC-based control system is in the process of
being developed and installed for the accelerator facility.
The control system has been designed to require low
maintenance during and after installation. A Graphical
User Interface (GUI) has been designed for control of
the accelerator with both ease of use and education in
mind. This allows non-specialist users and students the
opportunity to learn from using the facility.
Working on a limited budget, a variety of decisions had
to be taken. It was decided to use OS/2 Warp 4 as the

base operating system as the National Accelerator Centre
in South Africa had already implemented a network
broadcast system written for OS/2 [2]. OS/2 is also
a stable operating system with excellent real-time and
multitasking capabilities. All control software has been
written in-house, and interfaces with a commercial SQL
database sever.
The control system has been designed to be distributed,
making extensive use of databasing and networking. A
Variable Table Program is used as a standard communi-
cation system for broadcasting across the network, while
distributing the control system reduces maintenance and
installation down-time, and allows for local intelligent
control.

2 THE DISTRIBUTED CONTROL
SYSTEM

The control system was designed to be as homogenous as
possible with very little maintenance. This facilitates easy
upgrading and installation of future sections of the accel-
erator, and requires little expert computer knowledge. The
architecture of the system is based on the Standard Model
for accelerator control [3]. Software interfaces and controls
are on two levels, while hardware control resides on a third.
Fig. 1 illustrates the architecture and logical layout which
is also explained below. The software of the system can be
divided into four parts, while a computer network is used
to distribute the system.

2.1 The Network

The network used is an Ethernet 10BASE2 network which
was chosen because the product was mature and readily
available. The network has been separated from the Local
Area Network (LAN) of the Centre to avoid unnecessary
traffic. Since there are only a few computers connected to
the network (a maximum of 7 is foreseen), loading is kept
to a minimum, thus reducing network collisions. This also
reduces the transmission delay of the Ethernet system.
The communication system is designed to be event driven.
In event-driven systems, traffic is proportional to the
number of events. Since the control system is a reasonably
small system, with an average of 30 control variables
per control node, the number of events on the network is
almost always at a minimal level.

International Conference on Accelerator and Large Experimental Physics Control Systems

561

International Conference on Accelerator and Large Experimental Physics Control Systems, 1999, Trieste, Italy



Bottom Layer

Top LayerVariable Table Program

10BASE2 Ethernet Backbone

Console
Computer

Database
Server

Node 1 Node n

RS232-485
Converter

Nudam
Modules

To equipment to be controlled

Hardware Layer
Terminator

Figure 1: Logical layout and architecture of the control sys-
tem.

2.2 The Variable Table

The Variable Table Program [2], written by the NAC
control group, is used as the base message broadcast
system of the control system. Each control variable has it’s
own entry in the table with fields for actual and reference
values, and actual and reference status. Other fields in
the entry are used for general house-keeping and variable
linkage status. The variable table serves as a common
interface between each control node and console node on
the network, broadcasting state and variable changes to
each node. A local and global interface is available. The
local interface is used on controlling nodes so that only
variables associated with that node can be accessed. The
global interface is used on the console node for access
to all variables. In this way, an operator can change any
variable in the table, while only the controlling node for
that variable is able to respond.

2.3 Control Nodes

Control nodes are used to respond to operator requests and
convert these requests into actual controlling instructions.
The hardware used for electronic control are Nudam
modules [4] which accept ASCII instructions via the
RS232 port of the PC. Since there is always more than
one controlling application on a node, a COM port server
had to be designed to coordinate COM port access. A
priority queue is used between the controlling clients and

the server. All write instructions have a higher priority
than read instructions. When a variable is being controlled
by the operator, both the reading and writing priorities for
that variable are dynamically increased, thus this variable
will have the highest priority in the queue, causing the
server to process these instructions immediately.
When an operator initiates an instruction, the variable
table notifies the corresponding client via a network-wide
broadcast, which in turn processes the value change into a
command which is sent to the server. The server removes
the command, writes to the electronics and returns the re-
sult back to the calling client. The calling client processes
the result and performs error checking. Fig. 2 illustrates
the software layout for a controlling node. When no
instructions are issued by the operator, the clients perform
polling for the variable through the server. Any changes in
the variable value are written directly to the variable table.
The nature of the controlling electronics ensures that the

Variable Table Program

Thread 1
Read VT

Create
string

Thread 1
Read VT

Create
string

Thread 2
Parse
Server
String

Write VT

Thread 2
Parse
Server
String

Write VT

S2
Client 1 Client 2

Priority
Queue

Thread 2
Read PQ

Thread 1
Read Pipe

S1

SS

COM Port
Server

To Nudam modules

C
li

en
t N

am
ed

 P
ip

e C
lient N

am
ed P

ipe

Server
Named

Pipe

Figure 2: Typical software layout for a local controlling
node. Each client and the server have a semaphore (Sn and
SS respectively) which indicates whether the program is
running or not.

written instruction gets a return value or state before the
next instruction is performed. This removes the problem
of determining which result from the electronics corre-
sponds to which instruction, and therefore no unnecessary
processing is needed by the server.

562



2.4 Console Node

The console node is used to interface to the entire control
system. The operators use a GUI for control, which has
been written to be as generic as possible. This is achieved
through the use of object oriented programming and class
inheritance. Instead of each variable being controlled
separately, a dialog box is constructed to control all
variables for the electronic device. For example, a standard
voltage controlled power supply would have a variable
for the voltage, current and digital state. This would be
incorporated into one dialog box with a slider control for
voltage, digital control buttons and feedback variables,
instead of three separate dialogs for each.
Each controlling dialog box is created at real-time, based
on information stored in the database. A set of generic
digital and analog controls is used to construct each dialog
box. This reduces the rewriting of any code when a power
supply is changed. All that is needed is for the database to
be modified and the dialog box will be created accordingly.

2.5 Database Node

Since the control system is still in its development stage,
and a large number of parameters are modified regularly,
it is important that the system is readily expandable and
flexible. This is most easily achieved through basing the
entire control system on a database which is easier to
maintain than redesigning any software. This also allows
the system to be reconfigured and modified at one single
point.
A relational, network-aware database, DB2/2, is used for
storing all control and system variables. The variable
table uses this database to create each variable entry, and
each node reads this database at startup. The console
node, using a variety of database objects, retrieves all the
necessary information for system control and this is stored
locally. The control nodes retrieve only the information
that is necessary for that node, and stores it locally in
memory. Storing the database information locally on
each node, provides for any problems on the database
node. This way, if the database manager develops some
problems, the control system can continue to function,
losing only some functionality. The database classes that
are used are written to determine the database structure
at startup, so that no code needs to be regenerated if the
structure of the database is modified in any way.
The database consists of a variety of tables, but two main
tables are used for controlling hardware. The Main table
contains all variable definitions while the second contains
all power supply definitions, cross referencing with the
Main table. This way, any power supply object can be
created directly from the database, allowing for easy
modification.

3 INTEGRATION AND PRELIMINARY
RESULTS

Software integration of the control system is a very quick
and easy procedure. All that has to be done is placing
a few entries in the database for each power supply and
control variables. All other aspects are automatically
updated. The hardware integration is a far more time
consuming task, as the existing electronic controls are
old and still use buttons and dials, and all this has to be
replaced and new electronics interfaced. All electronics
are tested off-line before installation and commissioning,
reducing accelerator down time.
Preliminary results indicate that the software control is
very reliable and error free, with no errors being reported
apart from operator errors. The average response time for
instructions to be processed from the client through the
server, to the electronics and back to the client is 94 ms.
This excludes the overhead of network broadcasting. The
response time is acceptable for our control system, as there
are no time-critical processes that need control. Analog
fast response is done by faraday cup meters and beam
profile monitors.

4 CONCLUSION AND FUTURE PLANS

The control system has been successfully installed for two
sections of the accelerator. It has been functional for nearly
6 months now and has proved to be very successful. Some
problems have arisen from operators who have become
reliant on the old control system, but are slowly becoming
accustomized with the new PC-based version.
Currently, the control system is used only for standard
control. Future plans include logging, automatic beam
selection, safety implementation, continuous variable
monitoring and intelligent variable control. This would
need a separate program to monitor a variable, and based
on some preset physics laws and procedures, determine
what the value of that variable should be.
The entire control system is envisaged to be installed and
operational by the end of the year.

5 REFERENCES

[1] A.H. Andeweg, et al, “The Schonland Micro-Scanning Ion
Beam Analysis Facility”, Nucl. Instr. and Meth. B130 (1997),
37-44

[2] H.F. Weehuizen, I.H. Kohler, M.E. Hogan, P.J. Theron, “The
PC Based Control System of the NAC”, ICALEPCS’97, Bei-
jing, China, 1997

[3] A. Daneels, “Behind the Scene of Experimental Physics Con-
trols”, Nucl. Instr. and Meth. A352 (1994), 1-5

[4] A.H. Andeweg, S.H. Connell, R.D. Maclear, J.P.F. Sellschop,
“Computerised Control of the 6MV EN-Tandem Accelera-
tor at the Schonland Research Centre for Nuclear Sciences”,
These proceedings

563


