
Abstract

The paper presents results of the work aimed at providing
a uniform interface between application programs and
vacuum equipment in all CERN accelerators. The basic
idea is that, despite the diversity of existing low level
equipment controls, at the application program level
devices of the same kind, e.g. ion pumps, can be
represented by a common control model reflecting their
prime operational purpose rather then specific
implementations. The model is defined in a language
independent form though allowing for easy mapping to
specific application programming interfaces. An approach
to the model implementation in the CERN accelerator
controls infrastructure is described along with results of
prototyping in LEP and PS accelerators.

1 OVERVIEW

The Common Control Model (CCM) aims at providing a
uniform interface between application programs and
vacuum equipment in all CERN accelerators. The model
presents a vacuum system to the applications as a
collection of logical devices.

Each logical device contains a number of functional
components corresponding to physical variables in the
underlying vacuum equipment, and belongs to a device
class. Each functional component is uniquely identified by
a name within its device. All devices belonging to the same
device class have the same nomenclature of functional
components. Device classes can be organized in a
hierarchy; a logical device inherits all functional
components defined in superclasses of its class.

2 FUNCTIONAL COMPONENTS

The functional components serve as building blocks in the
logical device definition. Several classes of the functional
components have been defined in the CCM (Figure 1).
Each class provides a standard interface to a certain type of
the physical device variables and, depending on the type
(analog or discrete, input or output), specifies a number of
attributes which applications can observe and, in some
cases, modify.

All functional components have the following attributes
defined in the FunctionalComponent class:

• value
The current or last known value of the physical
variable associated with the component.

• validity
Specifies the value validity (valid, doubtful, not
valid), freshness (up-to-date, last known), and
indicates a specific reason for not valid or doubtful
values (e.g., “out of range” or “I/O error”).

• timestamp
For inputs: the time when the value was acquired
from the I/O hardware. For outputs: the time when
the value was last set by the applications.

Figure 1: Functional components

belongs toDevice

name

DeviceClass

name

name

contains

defined in

FunctionalComponent

value
validity
timestamp

Continuous

minValue
maxValue
units
resolution
format

Status Command

Condition

lastActive
lastInactive
severity
message

State

entryTime
previousState
stReason
timeRemaining

SettingMeasurement

Enumerated

validValues

superclass

subclass

A COMMON CONTROL MODEL FOR VACUUM EQUIPMENT AT CERN

I.Laugier, P.M.Strubin, N.N.Trofimov, CERN, Geneva, Switzerland

International Conference on Accelerator and Large Experimental Physics Control Systems

597

International Conference on Accelerator and Large Experimental Physics Control Systems, 1999, Trieste, Italy

Continuous components model analog physical variables.
An analog variable has a value range (minValue ...
maxValue), units of measurement, resolution and format.
The latter defines the number of digits and position of the
decimal point in the decimal value representation.

Measurement is a Continuous input component which is
typically used to model an analog measurement channel.
The normal use for the Setting component is to model an
analog output channel which sends data to a
digital-to-analog converter.

Enumerated components model discrete physical variables
which can take one of the values from the validValues set.
Status and Command components model general purpose
discrete inputs and outputs.

Condition is a specific kind of Status that is associated with
a certain boolean condition in a device, for example,
“pressure above a limit” or “power supply failure”. Its
normal use is to signal abnormal situations in a device and,
in particular, serve as a front-end for alarm systems. The
value of a Condition can be either INACTIVE or ACTIVE;
the lastActive and lastInactive attributes store time of the
most recent transitions between these values. The severity
attribute can take one of the following values (in the
increasing severity order): WARNING, INTERLOCK,
FAULT. The message text provides detailed information on
the abnormal situation signalled by a Condition. This
attribute takes a new value each time when a Condition
becomes ACTIVE and (as well as severity) may change
during this state.

The State component provides access to the data associated
with a device state machine. The State value corresponds to
the current device state; the entryTime holds a timestamp of
the entry into this state from the previousState. The
stReason attribute specifies the reason for the last state
transition and can take one of the following values:

• AUTOMATIC - an activity in a previous transient
(limited in duration) state has been successfully
completed.

• ACTUATION - the state transition was triggered by a
user command.

• INTERLOCK - the state transition was triggered by
an external interlock signal.

• FAULT - the state transition occurred due to a fault in
the device.

The timeRemaining attribute is only meaningful in
transient states, such as OPENING or CLOSING. It
indicates the time expected before an automatic transition
from the current state.

3 DEVICE CLASSES

In order to build a control model for a certain type of
vacuum devices one has to identify the “control points”
common to all devices of this type, map them to functional
components and group the components into the device
class definition. Major difficulties lay in the first phase: in
view of the diversity of low level equipment controls and
variety of device implementations in the existing system, it
is often not so easy to agree on a common set of parameters
which characterizes devices of some type.

The CCM approach here is based on the prime purpose and
principles of operation of a vacuum device rather then on
its specific implementation and the way in which this
device is connected to the control system. With this
approach, it is possible to present to the application
software a uniform and relatively stable interface with a
limited number of logical device classes reflecting core
functionalities of the vacuum equipment.

Figure 2: Vacuum device classes

For example, all vacuum gauges in the existing system are
represented by the single Gauge class with few subclasses
reflecting different principles of pressure measurement,
and the number of classes is unlikely to grow until a new
principle of pressure measurement will be applied in the
system (Figure 2).

The functional components represent partial functionalities
in a device. The behaviour of the device as a whole is
described by its state model. The state model specifies
activities and conditions associated with each device state
and formally describes the device’s response to the user
commands (actuations) and other external and internal
events, such as faults or interlocks. The standard interface
to the device state machine is provided by the state and

VacuumDevice

status : Status
state : State
actuation : Command

Gauge

PennigGauge PiraniGaugeIonGauge

Valve IonPump SublimationPump

ModulatedIonGauge

...

......

598

actuation attributes defined in the top level VacuumDevice
class.

The state value is usually interpreted in conjunction with
the current device status. The status value can be OK,
WARNING, INTERLOCK or FAULT and is set according
to the highest severity of the currently ACTIVE conditions
in the device (OK if none is ACTIVE). The status attribute
helps to qualify the state value: for example, a Gauge can
be in the MEASURING state with status WARNING if, for
some reason, the required measurement precision can not
be guaranteed (the actual reason can be determined by
examining relevant Conditions).

4 IMPLEMENTATION

The control model defines the vacuum equipment data and
behaviour; however, it does not specify the software
procedures and the Application Programming Interface
(API) which applications can use to communicate with the
logical devices. The methods part in the CCM object
specifications is deliberately omitted in order to leave
enough freedom in binding the model to different,
accelerator controls specific or industry standard, software
interfaces. The model compatible equipment access
software shall support:

• device interface discovery. It shall be possible for an
application to determine at runtime a set of functional
components available in a device and, for each
component, to determine its class.

• synchronous read and write operations with
immediate data retrieval upon request. All attribute
data types defined in the model shall be supported. It
shall be possible to access individual attributes of a
functional component as well as dynamically defined
arbitrary groups of attributes, e.g, to get value,
validity and timestamp as a result of a single read
request.

• subscription to the device data with on-change data
reporting. It shall be possible to specify which
attributes of a functional component can trigger the
reporting and, independently, the attributes which
shall be included in the report.

In the prototype implementation on PS and LEP
accelerators at CERN, the CDEV package [1] developed in
TJNAF has been used to provide the software interface to
the model.

Basic concepts of the CDEV software (device, device
class, device attribute) are very close to the control model,
so the binding is rather simple and straightforward.
Functional components map to CDEV device attributes,
and attributes of the functional components map to CDEV
properties. Using standard CDEV mechanisms an

application can get, set or monitor (subscribe to) values of
the component attributes.

The implementation follows a 3-tier architecture where the
Device Servers, based on the CDEV Generic Server
framework, act as intermediaries between applications and
subsystem specific controls (Figure 3) [2].

Figure 3: Prototype implementation in the
CERN accelerator controls environment.

The primary function of the Device Server is to implement
logical devices and to map them to the physical equipment.
For each functional component in a device the server
provides the “stub” functions which, using subsystem
specific interfaces and protocols, link the component
attributes to physical I/O points in the underlaying
equipment.

A Device Server for the vacuum equipment of the new
Antiproton Decelerator has been successfully running for
commissioning of the machine [3]. Summarizing results of
the prototyping activities, one can say that feasibility and
usefulness of the proposed approach have been proved and
a framework was established for further developments.

5 REFERENCES

[1] Jie Chen et al., ‘CDEV: An Object-Oriented Class
Library for Developing Device Control Applications’,
ICALEPCS’95, Chicago, 1996.

[2] I.Laugier, N.N.Trofimov, ‘Using CDEV as Middleware
in Vacuum Equipment Controls’, ICALEPCS’99,
Trieste, 1999.

[3] P.M.Strubin et al., ‘First Experience with Control and
Operational Models for Vacuum Equipment in the AD
Decelerator’, PAC’99, New York City, 1999.

 GUI Applications

CDEV API

Device Server

PS Vacuum Equpment LEP Vacuum Equipment

PS-EQP API SL-EQUIP API

 CDEV Generic Server

(C++, Motif)

599

