
AN ARCHITECTURE AND A FRAMEWORK FOR THE DESIGN AND
IMPLEMENTATION OF LARGE CONTROL SYSTEMS

C. Gaspar, CERN, Geneva, Switzerland
B. Franek, Rutherford Appleton Laboratory, Chilton, Didcot, Great Britain

Ph. Charpentier, CERN, Geneva, Switzerland

Abstract

The Online Control System of a high energy physics
experiment deals with all aspects of the detector’s
operations at the experimental site. Grouped in domains:
data acquisition, detector survey (temperature, pressure,
high and low voltages, fluids supply, etc.) and control,
infrastructure (cooling, ventilation, electric power),
interaction with the outside world (accelerator system,
data storage provider, offline analysis, etc.). In many of
these respects, sub-detectors have their own independent
system which are then integrated in the framework of the
experiment, as are also the various domains.

The control system should allow the operation of the
full experiment by a limited team of operators in a safe
and efficient manner.

In order to increase the operating efficiency and the
reliability and maintainability of the system we propose a
global approach in the design of the complete experiment
control.

1 INTRODUCTION

Our proposal is to use wherever possible a common
approach in the design and implementation of the various
domains of the Control System.

In order to make this integrated approach possible we
will propose:

• A Generic Architecture
That can handle all aspects of the monitoring and
control of a complete Online System

• A Framework
A collection of tools and mechanisms that allow
the implementation of the architecture. This
framework should be used by the developers of the
individual subsystems in order to build a coherent
system.

2 THE ARCHITECTURE

In order to design and implement such a complex
system several levels of abstraction are necessary.
Therefore, a hierarchical architecture, with as many levels
as necessary to represent the full experiment, has been
adopted.

This hierarchical structure will be composed of building
blocks organized in a tree-like structure. At the leaves of
the tree are the blocks which handle real devices and
where users can insert their own code, other blocks
contain the description, model, of the system and of its
dynamic behavior. The behavior description modules
should be organized in as many abstraction levels as
necessary to describe the full system. Figure 1 shows a
possible representation of such an environment.

Figure 1: Generic Architecture.

3 THE FRAMEWORK

In order to allow for the implementation of the building
blocks composing the proposed architecture a generic
framework should be provided to the users. This
Framework should provide the following functionality:

• Device handling
• Static modeling
• Connections for various HW devices

• Configuration Data Base
• Alarm handling and reporting
• Data archiving and trending
• User interface building tools
• Abstract behavior modeling

All items apart from the last one, which is of vital
importance for the implementation of the higher levels of
the architecture, are normally made available by
commercial SCADA [1] (Supervisory Control And Data
Acquisition) systems. Nothing seems to be available
commercially for behavior modeling so we will propose
SMI++.

International Conference on Accelerator and Large Experimental Physics Control Systems

499

International Conference on Accelerator and Large Experimental Physics Control Systems, 1999, Trieste, Italy

4 THE SMI++ TOOLKIT

SMI++ is based on the original State Manager concept
which was developed by the DELPHI experiment in
collaboration with the DD/OC group of CERN. SMI
(State Management Interface), the first implementation of
this concept [2], was used in DELPHI since 1990. Due to
lack of flexibility in many areas SMI was completely re-
designed using Object-Oriented technology and SMI++
implements significant extensions to the SMI concept and
a more powerful set of tools.

SMI++ is an Object Oriented Toolkit for Designing and
Implementing Distributed Control Systems. The SMI++
methodology combines two concepts: Objects and Finite
State Machines (FSM).

Using SMI the experiment can be decomposed and
described in terms of objects behaving as finite state
machines.

SMI objects can represent concrete entities, for
example an hardware device or abstract entities like a
logical sub-system. The objects representing concrete
entities interact with the hardware they model and control
through driver processes or proxies.

The objects are typically organized in hierarchical
structures called domains. The interaction between objects
can best be seen in the example of Figure 2.

Figure 2: SMI++ Run-Time Environment

The object model of the experiment is described using
State Manager Language (SML). This language allows
detailed specification of the objects such as their states,
actions and associated conditions. The main
characteristics of this language are:
• Finite State Logic

The main attribute of an object is its state. Commands
sent to an object trigger actions that can bring about a
change in its state.

• Sequencing
An action on an abstract object is specified by a
sequence of instructions, mainly consisting on

commands sent to other objects and logical tests on
states of other objects. Actions on concrete objects
are sent off as messages to the Proxies.

• Parallelism
Several actions may proceed in parallel. Only a test
by an object on the state of another one can suspends
the first object if the second one is still in transition.

• Asynchronous
Objects can specify logical conditions based on states
of other objects. These when satisfied will trigger an
action on the local object. This provides the
mechanism for an object to respond to unsolicited
state changes of its environment.

!- Example of SML code

object : RUN_CONTROL
 state : READY
 action : START_RUN
 do START READOUT_CONTROLER
 if READOUT_CONTROLER in_state RUNNING
 terminate_action/state=RUN_IN_PROGRESS
 ...
 state : RUN_IN_PROGRESS
 when READOUT_CONTROLER in_state ERROR
 do ABORT_RUN
 action : ABORT_RUN
 ...

The SMI mechanism allows an easy reconfiguration of
the system: changes in the hardware can be easily
integrated by modifying or replacing proxies and logical
modifications by changing the SML code.

The decoupling between the actual actions on the
hardware (done by the Proxies) and the control logic
(residing in the SMI objects) makes the evolution of a
system from its first test phase up to final complexity a
very smooth process.

4.1 Distributed Environments

SMI++ run-time components (SMI++ Domains,
Proxies and User Interfaces) are automatically generated
from the SML description and they can run distributed
over several different machines.

Distribution is embedded in the SMI++ system, all co-
operation between the different components of an SMI++
environment is transparently handled by an underlying
communication system - the DIM [3] package.

DIM and SMI++ are available in mixed environments
comprising the Operating Systems: VMS (VAX and
ALPHA), UNIX flavours (HP-UX, IBM-AIX, SUN-OS,
SUN-Solaris, DEC-OSF, Linux), Windows NT, OS9,
LynxOs and VxWorks.

500

5 SMI++ IN DELPHI

In DELPHI the full online system is controlled through
this mechanism, the various areas of DELPHI have been
mapped into SMI++ domains: sub-detector domains, data
acquisition (DAS) domain, slow controls (SC) domain,
trigger domain, LEP machine domain, etc. The full
system comprises about 1000 SMI objects in 50 different
domains distributed over 40 machines.

A high level of automation of the experiment’s control
system is very important in order to avoid human mistakes
and to speed up standard procedures.

Using the SMI mechanism the creation of a top level
domain - BIG BROTHER - containing the logic allowing
the interconnection of the underlying domains (LEP,
DAS, SC, etc.) was a relatively easy task [4].

Under normal running conditions BIG BROTHER
pilots the system with minimal operator intervention as
shown in Figure 3. In other test and set-up periods the
operator becomes the top-level object and using the user-
interfaces he can send commands to any SMI domain.

Figure 3: Delphi’s Experiment Control

6 SMI++ IN BABAR
In BaBar the HW devices where mapped to software

“Components” and controlled using EPICS. SMI++ was
then used to model the behavior of the components and to
integrate them into “Partitions”.

Figure 4: BaBar Control

BaBar’s partitioning scheme is totally dynamic. Users
can create partitions and allocate the set of components
they which to manipulate as shown in Figure 4. During
physics data taking one partition takes over and controls
all the underlying components. The BaBar Control system
is composed of hundreds of SMI++ domains.

7 SMI++ / SCADA INTEGRATION
Since the SMI++ toolkit is a collection of tools

developed in C++ it can easily be integrated into a more
generic framework based on a SCADA system. This can
bring several advantages:

• Provide Behavior Modeling to the Framework
• Use SCADA’s database to store the FSM

description and configuration, i.e. the same
database will contain device description and
behavior

• Use SCADA archiving tools to store state changes
• Use SCADA User Interface building capabilities:

• To build an integrated graphic FSM editor to
be used by the developer

• To build the user interface that will interact
with the FSM at run-time.

• Extend SCADA’s functionality to control non-
supported platforms since SMI++ runs on a larger
range of platforms.

8 CONCLUSIONS
In order to build an integrated system capable of

controling all aspects of a physics experiment we have
envisaged a generic architecture based on building blocks.
These blocks are organized in a hierarchical structure with
several abstraction levels.

The development of the building blocks should be
carried out with the help of a framework. This framework
should allow the users to design and implement their sub-
system by providing them tools and guidelines. Such a
framework could be built around a commercial SCADA
system by integrating missing parts one important one
being a tool for abstract behavior modeling. SMI++ can
easily be integrated and provide the SCADA with the
missing functionality.

REFERENCES
[1] A. Daneels, ”What is SCADA?”, these Proceedings.
[2] J. Barlow et al.,”Run Control in MODEL: The State

Manager”, in IEEE trans. nucl. sci. 36, 1989,
pp.1549-1553.

[3] C. Gaspar and M. Donszelmann, “DIM - A
Distributed information management system for the
DELPHI experiment at CERN”, Proceedings of RT
93, Vancouver, Canada.

[4] B. Franek et al.,”Big Brother - A Fully Automated
Control System for the DELPHI Experiment”,
Proceedings of CHEP 94, San Francisco, USA.

501

