
FESA

FRONT-END SOFTWARE
ARCHITECTURE

[FESA]
Michel Arruat, Leandro Fernandez, Stephen

Jackson, Frank Locci, Jean-Luc Nougaret, Maciej
Peryt, Anastasiya Radeva, Maciej Sobczak, Marc

Vanden Eynden
Accelerators & Beams Department, CERN

FESA

Outline

What is FESA ?

How FESA ensure Equipment Software portability across

CERN Accelerator

Quick turn in the FESA developer’s shoes

How FESA handle evolution

Some recent extensions

Conclusions

FESA

What is FESA ?
Application Domain

Equipment Software running on front-end computers:
FESA class.
Surrounding Software Components:

Control Middleware: communication infrastructure
Device/Property model.
Narrow API: same calls for all equipment
classes (access methods: get/set/subscribe).
A device belongs to a Device Class

Timing: timing events are distributed over a
dedicated network to local timing receiver.

Handles timing hardware.
Provides interface for timing events
connection.

Hardware:
Standard modules comes with drivers and /or
libraries

[see: “Remote Device Access
in the New CERN
Accelerator Controls
Middleware” ICALEPCS’ 01]
[see: “The CERN LHC Central
Timing, a Vertical Slice”]

FESA

What is FESA ?
Real-time Framework

Object-oriented real-time Framework:
Captures the structure and the control flow of the application domain.
Defines the application domain’s design pattern.
The Framework is the application.
Equipment Specialist provides application-specific behaviour.

FESA Framework

RTAction
execute()

ServerAction
execute()

EventSource
postEvent()

Scheduler
schedule()

1..n1..n Device

refines
MyClass

FESA

What is FESA ?
Series of Graphical Tools

Developing a FESA class requires the developer to produce three XML documents:
Design, Deployment, Instantiation.
Dedicated tool based on a Generic XML editor (Java application) configured by
dedicated W3C’s XML Schema are used to supply each XML document. The XML
Schema is used to express the data model to which the XML document must conform.

Benefits of this architecture:
Java code remains unchanged.
Evolution is handled by the XML Schemas.

Generic
XML editor

XML Schema

Design Tool
Schema = Design Schema

Deploy Tool
Schema = Deploy Schema

Instantiation Tool
Schema = Instantiation Schema

FESA

What is FESA ?
Design Tool

Driven by the FESA Design Schema that
encodes the meta-model.

XML is used as a high level modelling
Language.

Equipment specialist thinks equipment’s
design in terms of:

Public interface: properties.
Device-model: software abstraction of the
hardware.
Server actions.
Real-time actions.
Logical events.
Scheduling: triggering rules.

FESA

What is FESA ?
Deployment Tool

Deployment : driven by the Deployment schema. Generated on the fly based
on the current list of FESA classes.

FESA classes can be merged in the same server or deployed as individual server.
Start-up mode: automatic or manual.

FESA

What is FESA ?
Instantiation Tool

Instantiation : driven by the Instantiation schema. Generated on the fly based
on the Design document.

Used to configure a set of devices on a front-end.

FESA

What is FESA?
Code Generation

Thanks to the formal language used to design equipment software the
framework is refined by automatic code generation rather than hand-coding.

XSLT

RTAction
execute()

Device ServerAction
execute()

MyDevice Control
execute()

SetSettings
execute()

refines

MyDevice Control
execute()

SetSettings
execute()

Generated Code: entirely handled by FESA
Custom Code: Action skeletons are generated by FESA

FESA

What is FESA ?
A Testing tool

It’s a complete generic Java application: XSL templates convert
Design and Instantiation documents into Java property.

Front-end and
devices list
(Instantiation)

Cycle Selector
(Timing)

Property list
(Design)

Property detail
(Design)

Generic viewers

FESA

How FESA ensure Equipment Software
portability across CERN Accelerator

….…. ….….

PSB

CPS

SPS

LHC

Experimental
area

Experimental
area

Experimental
Area

Accelerators share:
Same physical devices.
Same layer Hardware.

But:
Timing events specifics by
accelerator.
Device’s setting multiplexing:
cycles defines virtual devices.
Switching to the next cycle
causes a switch of device’s
setting.

[see: The CERN LHC Central Timing, a Vertical Slice]

FESA

How FESA ensure Equipment Software
portability across CERN

In order to ensure FESA classes portability across
CERN Accelerator, FESA provides a complete
abstraction of the timing at different levels:

Design: design is not accelerator’s timing dependent .
Timing events are logical events: concretization into accelerator
events is done at the instantiation stage.

Implementation: multiplexing device’s setting are managed by
the framework transparently for the custom code.

In this way FESA classes can be reused across all
CERN accelerators. Design and Implementation are
accelerator independent.

FESA

Quick turn
in the FESA developer’s shoes

Design

Implements

Instan
tiate

Te
st

Case study: developing a FESA class which generate periodically a sine wave
of 100 sampling with a phase shift. It shall be possible to change amplitude
and frequency of the sine wave.

FESA

How FESA handle evolution?

FESA evolution is mainly driven by requirements coming from
Equipment Groups.
Integrating new features in FESA requires to modify:

The meta-model XML Schema.
XSL templates used to generate the custom code.
Framework source code: implementation of the new features.

What remains unchanged:
FESA tools: java code is really stable.
Equipment software custom code.

FESA Release policy:
Three operational release: the new one makes obsolete the oldest one.
Retrofit tool: completely automatic. Upgrade the different XML
documents, and the code generation.

FESA

Recent extensions:PLC integration

More and more accelerator devices are
connected to PLC.
Control hardware layer for complex
devices can be a mixture of VME modules
and PLC.
Requirements:

PLC programmers are not FESA expert and
have no desire to deal with Linux or C++.
No additional work.
No new concept or complexity
No duplication of description

G
IG

A
BI

T
E

th
er

ne
t

VME front-end
Fesa classes

PC front-end
Fesa classes

Siemens PLC

Schneider PLC

FESA

Recent extensions: PLC integration

FESA meta-model defines plc-class as a restriction of a standard class model

Integrated a PLC into FESA consist of:
Instantiate a plc-class design.
Design the device-data (everything-else is pre-
configured).
Instantiate the device instances
Load in the PLC development tool the device
data structure automatically generated
Develop the PLC logic as usual

Automatic Generation of
the device data structure
exchanged between
PLC and front-end

Device
data model

FESA

Recent extensions: Transaction

Requirement:
“to guarantee that several settings
acting on different devices deployed
on various front-ends will be taken in
account at the same time or none of
them in case of error”.

Implementation:
Two phase commit transaction.
Property has to be flagged as

“transactional”.
Requires the timing system to fire
“Commit” or “Roll-back” event.

Result:
Completely handled by the
Framework.
Custom Code has only to supply a
“ValidateSetting” method.

CoordinatorFront-end A Central TimingFront-end B

Timing Event "CommitEvent"
Payload= transactionId

Setting property
+ Transaction Id

EventName= CommitEvent
Event payload = Transaction Id

Validate Setting Validate Setting

Send Acknowledge Send Acknowledge

Send Commit Event
Send CommitEvent

Commit Transaction

CommitEvent
CommitEvent

CommitTransaction

CommitEvent

TransactionCompleted

SendSettings

Close

Commit the Transaction

FESA

Other extensions

Composition relation-ship between FESA classes.
Façade: complex FESA class can decomposed into sub-FESA classes.
Composition: “Has-a” relationship.

Critical Settings Management: guarantees setting integrity for
critical parameters. Implementing using public-key cryptography
and a digital signature.
Run-time diagnostic: “topic-oriented” diagnostic to have a finer
granularity in the trace options.
Monitoring: permanently survey the scheduling and the control
flow of any equipment software.

Again all these extensions have been managed transparently for the
Equipment Software.

FESA

Conclusion

In spite of the huge diversity of devices, FESA has successfully
standardized a high level language and an object oriented
framework. About 250 FESA classes deployed on ~ 600 front-
end computers (most of them on the LHC, but also on the LHC
injectors).
FESA reduces the time spent developing and maintaining
equipment software and brings a strong consistency across all
equipment software.
The FESA development environment is based on a modelling
tool, and keeps model and implementation synchronized.
FESA provides an “XML-Centric Equipment Software design”
approach.
All the recent extensions have proven the flexibility and the
capability of the complete FESA infrastructure to handle
evolution.

	FRONT-END SOFTWARE ARCHITECTURE�[FESA]
	Outline
	What is FESA ?�Application Domain
	What is FESA ? �Real-time Framework
	What is FESA ? �Series of Graphical Tools
	What is FESA ?�Design Tool
	What is FESA ?�Deployment Tool
	What is FESA ?�Instantiation Tool
	What is FESA?�Code Generation
	What is FESA ?�A Testing tool
	How FESA ensure Equipment Software portability across CERN Accelerator
	How FESA ensure Equipment Software portability across CERN
	Quick turn �in the FESA developer’s shoes
	How FESA handle evolution?
	 Recent extensions:PLC integration
	Recent extensions: PLC integration
	Recent extensions: Transaction
	Other extensions
	Conclusion

