National Ignition Facility

12th ICALEPCS conference , Knoxville, Tennessee , USA, Oct 17, 2007 Ephraim Tekle, Lawrence Livermore National Laboratory, USA

* This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Security under Contract DE--AC52--07NA27344

NIF is 94% complete, on schedule and budget

1 30

NIF concentrates all the energy in a football stadium-sized facility into a mm³

Matter
Temperature>108 KRadiation
Temperature>3.5 x >106 KDensities>103 g/cm3Pressures>10¹¹ atm

8 7 7 8

NIF is a 192 beam laser organized into quads, bundles and clusters with a 10m diameter chamber

NIF-0101-00068

The Integrated Computer Control System (ICCS) orchestrates complex automated shots

- 60,000 control points are installed in over 6,000 line replaceable units
- ICCS is deployed on 850 front-end processors, servers, and workstations
- A CORBA-based software framework was developed to deliver 1.8M SLOC
- 192 beams precisely aligned on target to 10 microns over a 300-meter optical path

Shots fired every few hours culminate in a nanosecond laser pulse in lock-step with diagnostics timed to 30 picoseconds

The target positioner (TARPOS) inserts the mm-scale fuel capsule with five degrees-of-freedom ****************

10 meters

alit

a a a a a a a

TARPOS extended inside the target chamber

The alignment sensor views the target for precision alignment

Diagnostic instruments manipulators (DIM) position physics packages at chamber center

Four DIMs precision align a diverse suite of diagnostic instruments

The seven-floor target bay contains the vacuum chamber, final optics system, and target diagnostics

- Limited chamber access requires remote control and sensing
- Positions maintained to accuracies of 10 microns
- Varied 3D geometries and alignment scenarios
- Complex motion sequences involving multiple devices
- Absolute encoder and video feedback
- Potential collisions must be avoided

A CAD model-based control system with integrated video feedback meets these requirements

Collision avoidance protects positioners that reach 6 meters into the chamber

Positioner Interference Matrix

Situational awareness provided by the surveillance cameras is less than ideal

Collision-free positioner routes are calculated using model-based analysis and tracking tools

- Pro/ENGINEER*
 - CAD tool used to design NIF's mechanical hardware
 - Leveraged to derive the control system model
- DIVISION MockUp*
 - 3D simulation of the chamber and all positioners
 - Based on experimental set up
 - Used for real-time controls during operations
 - Live visualization of positioner operation
 - Delivers sub-millimeter accuracy
 - High-precision servo motors with encoders provide hardware feedback
 - Determines distances between points or/and positioners
 - Calculates collision free routes
 - Video overlays for manual control

The 3D model "sees" the chamber mechanical arrangement at all times

Simulation integrity is verified in real-time by comparison to the view generated by MockUp

- Calibrated video
 - Virtual 3D axes are defined using cross-coupling matrices
 - Video views are calibrated to these axes
- Video integrated control
 - Calibrated videos provide a live-video integrated control by dragging movement commands on the screen
- Operator aids
 - Live-video overlays
 - Alignment markers
 - Zoom, etc.

Movement commands are "dragged" across the live video display using calibrated views

- Reference point and transformation matrix
 - Maps any point (x,y) in the camera coordinate system to (x,y,z) in chamber coordinate system
- Scale and rotation factors
 - Maps video pixels (x,y) to positioner coordinate system
- 3D virtual-axes
 - Defined along camera field-of-view using cross-coupling matrices

Routing is analogous to driving directions given by Google Maps

Positioner route finding

Devices Connected Automatic Updates Emulation

The offline test lab integrates special hardware simulators and cameras

- Hardware-based testing
 - Multi-axis encoded hardware simulators on an optics table
 - Calibrated cameras
 - PLC motor end-of-travel monitoring and shut-down system
 - Configured to mimic the NIF target chamber
- Software-based testing
 - Emulated virtual positioners
 - Provides for multiple concurrent tests

The test lab ensures software quality, assesses usability, and helps train operators

Hardware-based testing is supported by five-axis positioner simulators that have the same range of motion as the real positioners

Calibrated video cameras

Test Lab

-

Simulator undergoing acceptance tests

10

80

- Enhanced real-time video feedback provides operators with metrology and controls in real physical dimensions
- Model-based visualizations provide a complete control environment in support of complex operations in the limited access chamber
- Model validation assures the system accurately represents reality
- Automated controls ensure interference-free and repeatable coordinated motion sequences
- Status
 - Video-assisted controls are deployed to NIF
 - CAD model-based system is on schedule for delivery next year

