

Lessons Learned From The SNS Relational Database

Presented by David Purcell

For David Purcell, Jeff Patton, and Katia Danilova

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

2. Equipment receiving, acceptance test data: tracked by barcode

3. Calibration/Maintenance of installed devices: tracked by barcode

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

2. Equipment receiving, acceptance test data: tracked by barcode

3. Calibration/Maintenance of installed devices: tracked by barcode

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Network Attached
Devices

Network Attached

Devices

3. Calibration/Maintenance of installed devices: tracked by barcode

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

U. S. DEPARTMENT OF ENERGY Weekly Highlights

And A Quick Look At The Numbers

	2003	2007
Database Tools	Oracle 9i Enterprise Edition RDMS Client Tools Powered by 9i Application Server	Oracle 10g Release 2
Application Subject Areas	6	10
Tables	161	378
Device Records	5,700	39,710
Parameter Records	41,000	544,485
Construction / Database	40% vs. 30% Complete	100% vs. Unknown

Let's Compare

2003

- Database Applications
 - LabVIEW
 - XAL
 - Rack Profile
 - Web PV Data Applications
 - Electronic Logbook
 - JERI (Java EPICS RDB Interface)
 - Bypass Request System
 - Equipment Tracking System
 - Web Reports (Discoverer)
 - Commercial Products (ProjectWise, DataStream)

2007

Database Applications

DB 2 XAL DB Browser

Data Queries

From Alarm Log To Oracle
 From Error Log To Oracle

IOC Health to RDB

PS Report

PV Log Browser

SS Loader

- Spline Fit - Trip Monitor

Trip Viewer

IOC Report Tab Diagnostics IOC configuration

Bypass Request

Data search and archive

DataStream

Datastream Reports

Document Number
Reservation

Electronic Logbook

Equipment Tracking
 Equipment Receiving

ICS NetReg

- JACoW SPMS (ICALEPCS07) Jeri

MPS TripsMPS Audits

ODBC users

Operations Administration

Power Outage Report Power Updates

- Primavera

Projectwise

PSSO Wireless Meter Entry

PSSO Meter readings Report

Certain Physics applications

 Power Supply configuration generation

PV Crawler

PV Logger

- RF Cavity trips

SCORE

- SNS channels 22,32,96,97,98

SNS Service Request Web Interface

SNS Work Order Closeout

- Web reports including ROCS

Who are "We"

Band of merry database professionals.

Lost Opportunities?

- SNS has been successful
- Many good things done without using the SNS RDB.
- "We" have learned a lot.
 - Lost opportunities caused disappointment but increased ability to produce later on.

What Did We Learn.

Reasons for Success

- Good Schema
- Project Champion
- Historic Reference
- Real Need
- Code Stealing

Lost Opportunities

- Deadlines
- User/Client Expectations
- Data In Versus Out
- Good Schema
- Data Maintenance

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY
Weekly Highlights

Some Examples - Configuration

MPS

(Provide database derived configuration files to MPS IOCs)

- Strong Leader or "Champion"
- Set Procedure
- Existing Usable GUI
- Standard Accepted Tool

PC Based IOCs

(Provide database derived configuration files to PCs)

- Management Request
- No Leader or "Champion"
- No Long-term Plan or Procedure
- Complex GUI

BLM IOCs

(Provide database derived configuration files to BLM IOCs)

- "Champion" Left Project.
- Database Developer Within BLM Group.
- No Set Procedure.
- GUI built as Part of Project BUT Not Completed.
- RDB Control Developed to Replace Existing Hand Entry.

Power Supply

(Provide database derived configuration files to power supplies)

- Multiple Leaders
 - Multiple Scopes
- Good Plan and Procedure
- Functioning Application
- Schema Required Data From Others

Some More Examples

Electrical Power Project (RPPA13)

(Manage and Report on Electrical Power Routing)

- Management Driven
- Strong Leader or "Champion"
- Procedure Built Into Project
 - Created GUI at Start of Project
- Standard Accepted Tool
- QA of Data
- Data Ownership

Diagnostics RDB Reports

(Accessible data summary reports specific to the Diagnostics Group)

- Group Leader Implemented
- Database Developer within group acting as "Champion"
- Data Ownership
- Standard Toolset
- Leader and developer have left group.

General RDB Reports

- Simple is better.
- Require Easy Access (web or email)
- Alternative not available.
- Clients are necessary

Final Examples

Equipment

(use of DataStream to track equipment maintenance)

- Management Mandate
- Strong Leader or "Champion"
- Takes advantage of complex SNS schema.
- COTS (DataStream)
 - Ready to Use System?
 - SNS RDB developers not able to work with data.
 - GUIs are available but do not meet client requirements.
- Overwhelming
 - No Implementation Strategy.
 - Too Much Work and Not Enough Support Personnel.
 - Extra Unplanned Work for Technical Groups.
- Introduced Work-a-rounds
- No Tools.
- No Maintenance plan.

Electronic Logbook

(Electronic Logbook)

- SNS Wide Requirement.
- Non-Restrictive Timeframe.
- No RDB Restrictions on Data.
- Easy to Use GUI.
- The Wrench that Pounds the Nail.

Who thinks what?

- Database Developers (Glad and Sad)
 - Glad we have helped in the ways we have.
 - Disappointed in the lost opportunities.

Who thinks what?

- Database Developers (Glad and Sad)
 - Glad we have helped in the ways we have.
 - Disappointed in the lost opportunities.
- Software Engineers (Pessimistic)
 - Changes in approach don't help reach goals and the RDB is therefore unnecessary.

- General Users (Frustrated)
 - Believe RDB should be populated.
 - Want Permissions.
 - Want Applications That Allow Maintenance.

Who thinks what?

- Database Developers (Glad and Sad)
 - Glad we have helped in the ways we have.
 - Disappointed in the lost opportunities.
- Software Engineers (Pessimistic)
 - Changes in approach don't help reach goals and the RDB is therefore unnecessary.
- General Users (Frustrated)
 - Believe RDB should be populated.
 - Want Permissions.
 - Want Applications That Allow Maintenance.
- Management (Apathetic)
 - Good idea, Use it if you can.
 - Don't let it slow you down.
 - Still Not High Priority

What Does SNS Need To Do?

NOTHING.

The overall goals of the project continue to be realized.

BUT...

 Goals may be easier to reach with a stronger RDB implementation.

SNS Summary

Did Well

- Schema
 - Complex but serves most project needs.
- RDB was emphasized from beginning of project in a couple of groups.
 - I was first hired in Diagnostics group and did all sorts of stuff. It became personal.
- Enthusiastic Champions
- Some Groups Implemented directed use of RDB.
 - Managers of the Physics and Diagnostics directed members RDB final resting place for data.
- Some Great applications and Reports
 - ELog, JERI, ...

SNS Summary Cont.

Could have done better.

- Management support.
- Procedures and Standards
- More RDB development personnel.
- Standardize the RDB use for all of project.
 - Access, Oracle, MySQL, etc are still in use.
- GUI Standardized toolset for data entry and reporting.
 - Entry GUIs Especially Bad or Absent.
- Eliminate Telepathic Requests
- Give tools to users as soon as possible.
- Plan on how to deal with short cuts that were allowed.
 - Incorrect RDB use
 - Engineers admit to entering data just to get it in. Now it's embedded and hard to fix.

Advice:

- Start thinking RDB from start a mind set
 - Unofficial part of mission statement.
 - Sooner or later it will go in.
- Get support
 - Hire Database Developers as soon as possible
 - Help them understand their role.
 - Multi-task RDB developers as technicians (or vice versa)
 - Embrace Project Champions
- Take advantage of what is available.
 - Settle on one project-wide toolset.
 - SNS Schema or IRMIS ...
 - Use common reporting and input tools
- Project-wide use of agreed upon RDB
- Try to eliminate allowance of shortcuts.
 - Non-standard is bad and will probably become permanent.
- Make Use of RDB Applications a No-Brainer
- Don't Mandate but proceduralize Procedures and Standards.

