

Karl C. Wilhelmsen Lawrence Livermore National Laboratory, USA

2007 International Conference on Accelerators and Large Experimental Physics Control Systems Knoxville, Tennessee October 14, 2007

Agenda

- Introduction to NIF and automatic alignment
- Control system architecture
- Coordination and scaling
 - 3,800 closed loop adjustments using 12,000 devices
 - Management of shared laser components
- Image processing
 - Algorithm robustness in a laser environment
 - Subpixel accuracy
 - Reliability and off-normal image detection

Alignment uses sensors and actuators within Line Replaceable Units

LM5 ALM6 VAlign & Diag. Towers Flashlamps & Slabs Align Main Tower amplifier Power LM4 SF3 SF4 amplifier LM2 Polarizer Flashlamps & Slabs PEPC SF1 & 2 Final Debris Shield optics Target Gate Valve PAM **Switchyard Laser Bay Target Bay**

NIF is a 192 beam laser organized into "clusters", "bundles", and "quads"

ICCS shot cycle automatically aligns, fires and diagnoses laser shots every 4 hours

Automated Shot Cycle

- Input shot goals from laser physics model
- Perform automatic alignment
- Configure diagnostics and laser settings
- Conduct countdown (SW: 4-m, HW: 2-s)
- Assess shot outcome and archive data

The automatic alignment system compensates for optical system drift

Pointing error at the Input Sensor

Minutes from starting time

Requirements led to significant technical challenges

- Minimize operator effort
 - Situational awareness
 - Manual controls
- Deliver subpixel accuracies
- Algorithms tolerant to
 - Varying light levels
 - Laser diffraction effects
 - Equipment anomalies
- Reject off-normal images
- Rapidly align 192 beams
 - Parallel operation
 - Computational resources
 - Many devices are shared

The bundle architecture assures full-scale performance of the alignment control system

Replicated bundles are activated by starting new processes in the database

Process distribution example for beam control

The National Ignition Facility

The alignment system maintains the beam within the optical clear aperture

Centering definition

- Translates beam position without affecting pointing
- Sensor configured to near-field mode

Pointing definition

- Adjusts angle of propagation without affecting centering
- Sensor configured to far-field mode

Generic control loop flow diagram

Centering Alignment Principle

The image of the beam reticule (circle) is adjusted to the midpoint between the reference reticules (squares)

Pointing Alignment Principle

The source sub-image is aligned to the center of the pinhole shadow

Managers coordinate resources and activities

- Supervisor
 - Manual controls
 - Status
- LINUX Cluster
 - Image processing
 - Self-leveling

- Segment Manager
 - Alignment plans
 - Loop definitions
 - Sequence control
- Component Manager
 - Device sharing
 - Throughput optimization

NIF's beamline architecture was designed to permit alignment of segments in parallel

The Segment Manager executes alignment plans efficiently to achieve the required performance

The Component Manager optimizes task processing throughput

- Component Managers
 - Orchestrate setting up laser configurations
 - Contain multiple device grouping called mediated components
- Mediated components
 - Manages device positions
 - Can include other mediated components
 - Reservations lock the configuration
- Task queues
 - Requests wait until devices become available
 - Deadlocks eliminated by enforcing priority
 - Queue optimization actively minimizes required movements

The main laser sensor is a mediated component

One out of every four devices in the alignment system are shared

Image processing must always be reliable

- Precision and accuracy required to 0.3 pixels
- Robustness is challenged by
 - Gradient illumination
 - Noise
 - Diffraction effects
 - Defocus
 - Magnification
- Discard off-normal images
 - Extraneous blobs
 - Saturation
 - Clipping

... while still being robust to varying laser conditions!

Many processing algorithms are used ...

Images undergo three processing steps

Image quality is measured by estimating algorithm uncertainty

- Uncertainty Definition
 - Instability in the position determination
 - Obtained by varying either thresholds or noise
- Threshold-based method (e.g. weighted centroid)
 - Image processed with thresholds at 10 different levels
 - Delivers subpixel accuracy as a byproduct
 - Uncertainty: variability of the position estimates
- Noise-based method (e.g. matched filter)
 - Monte Carlo model of known uncertainty is constructed for the image using prescribed amounts of noise
 - Uncertainty: estimated from the model based on noise present in the input image

Low uncertainty confirms a high quality input image, with confidence that algorithm results can be trusted

Example of sub-pixel position estimation confirms accuracy is within tolerance

Poor laser wavefront prohibits a successful alignment outcome in this uncertainty example

Architectural enhancements achieved the required performance

Year

Full automation of all 192 beams is moving rapidly toward completion

We've exceeded performance goals with a automatic system that is robust and reliable

The National Ignition Facility

Remaining work extends automation of all 192 beams to the target for ignition experiments beginning in 2010

Many processing algorithms are used ...

Crystal Reflection

a) Weighted Centroid

b) Hough Transform

d) Matched Filter

