
JavaIOC

Marty Kraimer
ICALEPCS 2007

October 2007 ICALEPCS 2007 2

JavaIOC – What Is It?

IOC - Input/Output Controller

Has a “smart” real time database

− Record instances can be processed.

− Records can be accessed via Channel Access.

− Records can link to hardware, other records, etc.

Has functionality like an EPICS IOC but

− Structured data

− Better Array data

− Generic Support

− Written in Java

October 2007 ICALEPCS 2007 3

Features

PV (Process Variable) Database

DBD - Database Definition Database

DB – Runtime Database of record instances

XML Parsers for DBD and DB

Record Processing

Record Scanning: Periodic and Event

Record Monitoring

Channel Access

Generic structure/recordTypes and support

October 2007 ICALEPCS 2007 4

PV Database

Field types
− Primitive: all Java primitives except char

boolean, byte, short, int, long, float, double

− string: implemented as a Java String

− structure: has fields. Each field can be any type

− array: has elementType which can be any type

Complex Structures fully supported

Introspection and Data interfaces:
Provide access to any field.

October 2007 ICALEPCS 2007 5

PV Introspection

Introspection Interfaces, i.e. no data
− Field: Methods: getType, getFieldName, ...

− Array: extends Field: Method: getElementType

− Structure: extends Field

Methods: getFields, getStructureName

FieldFactory

− Implements introspection interfaces

− Can be extended but probably not necessary

October 2007 ICALEPCS 2007 6

PV Data Interfaces

PVField: Base for data: Methods: getField, ...

− PVBoolean,...,PVString : Methods: get,put

− PVArray: Base for array data interfaces

PVBooleanArray,...,PVArrayArray : Methods get,put
− PVStructure provides access to a structure.

− PVRecord provides access to a record instance.

PVDataFactory

− Default implementation.

− Any PVField can be replaced. Often useful

ConvertFactory: Convert between data types

October 2007 ICALEPCS 2007 7

org.epics.ioc.pv

Self Contained Java package for PV Data
Can be used for other than JavaIOC
− Example: Channel Access

Implements CD Data by using PV Data

Designed for use by other Java Facilities
Via structures could support
− Vector/Matrix Data
− Image Data
− etc.

October 2007 ICALEPCS 2007 8

XML Parsers

DBD - Database Definitions
− structure

− recordType - A top level structure

− create – defines factory that replaces default
data implementation.

− support – defines a factory that implements
support for a field.

DB – Database of record Instances

Macro Substitution and Include

October 2007 ICALEPCS 2007 9

PV Naming

EPICS pvname is <record>.field

JavaIOC is <record>.name.name. ...
− name can be field name or a property

Some examples

− <record>.value
<record>.value.display.limit.low
<powerSupply>.power.value
<psArray>.supply[0].power.value

October 2007 ICALEPCS 2007 10

Record Processing

A record instance is basic process unit

− It is locked during any processing or I/O

− RecordProcess is master. It calls support for
record instance.

− Support modules implement semantics

− ANY field can optionally have support

− Record instance must have support

October 2007 ICALEPCS 2007 11

Record Scanning

Scan
− Types: passive, periodic, event

− Priority Uses Java priorities

− Threads created as required

Periodic
− Arbitrary rate: minPeriod,deltaPeriod

Event
− Based on eventName

− Replaces EPICS event and I/O Inter

October 2007 ICALEPCS 2007 12

Support

Implements Record Processing Semantics

Each record instance has support

Each field can optionally have support

Support can call other support

Example: generic – support for a structure

− Calls support for each field that has support

− Each support must finish before next is called

− Supports a recordType or a structure

October 2007 ICALEPCS 2007 13

JavaIOC Data Model

Simple: All related data appears together
in a structure

Intended for Client tools and for Support
Field name can be a property name
− A null structure(no fields and no support) is

not a property.
− If a structure has a field named “value” than

every other field is a property unless it is a
null structure.

October 2007 ICALEPCS 2007 14

Finding Properties
PVField provides method findProperty
− PVField findProperty(String fieldName);

Two examples for fieldName are:
− “value”
− “supply[0].power.value”

If pvField refers to the value field than
− “display”
− “display.limit.low”

October 2007 ICALEPCS 2007 15

structure/recordType double

Next slide shows structure

Follows JavaIOC Data Model

structure double can:
− Just holds data
− Be an input or output or both
− Can be embeded in other recordTypes
− Is a building block for “device” records

recordType double adds scan field

October 2007 ICALEPCS 2007 16

double.xml

<structure name = “double” supportName = “generic” >
<field name = "value" type = "double" />
<field name = "alarm" type = "structure"/>
<field name = "timeStamp" type = "structure" />
<field name = "input" type = "structure" />
<field name = "valueAlarm" type = "structure" />
<field name = "output" type = "structure" />
<field name = "display" type = "structure" />
<field name = "control" type = "structure" />
<field name = "history" type = "structure" />

</structure>

October 2007 ICALEPCS 2007 17

Fields in double

value has type double

All other fields are a null structure
− A record instance can override
− If not overridden than NOT a property

Following two slides show example
− The definition of display
− An example record instance

October 2007 ICALEPCS 2007 18

display.xml

<structure name = "display">
<field name = "description" type = "string" />
<field name = "format" type = "string" />
<field name = "units" type = "string" />
<field name = "resolution" type = "int" />
<field name = "limit" type = "structure"

structureName = "doubleLimit" />
</structure>

October 2007 ICALEPCS 2007 19

record instance

example.value will have property display.

<record name = "example" type = “double” >
<display structureName = “display”>

<units>volts</units>
<limit>

<low>0.0</low>
<high>10.0</high>

</limit>
</display>

</structure>

October 2007 ICALEPCS 2007 20

Support Overview

Implements record processing semantics

Each record instance has support

Each field of a record instance can
optionally have support

Support is as generic as possible
− During initialization look for required fields
− If required fields not found don’t start

generic is often the support

October 2007 ICALEPCS 2007 21

Analog Input Example

The recordType is double

input has structureName=linearConvert
− This has fields value, input, and linearConvert
− The support is generic which calls

pdrvInt32Input - accesses hardware
linearConvertInput

October 2007 ICALEPCS 2007 22

Analog Input Instance

ai recordType=double support=generic
value A double that is set by linearConvertInput
input structureName=linearConvertInput

support=generic
value An int that is set by pdrvInt32Input
input supportName=pdrvInt32Input
linearConvert supportName = linearConvertInput

When ai is processed

support for ai calls support for ai.input
support for ai.input (generic)

calls support for ai.input.input (pdrvInt32Input)
gets an int value and puts result in ai.input.value

calls support for ai.input.linearConvert
gets ai.input.value, converts it, and puts ai.value

October 2007 ICALEPCS 2007 23

powerSupply Example

This is an example of a “device” record

Only new support is powerSupplyCurrent
− It gets power.value and voltage.value
− From these it computes the current
− Puts the current into current.value

October 2007 ICALEPCS 2007 24

PowerSupply DBD

<structure name = “powerSupply”
supportName = “generic”>

<field name = "power" type = "structure"
structureName = "double" />

<field name = "voltage" type = "structure"
structureName = "double" />

<field name = "current" type = "structure"
structureName = "double" />

</structure>

October 2007 ICALEPCS 2007 25

powerSupplyArray

The following defines a recordType that can hold an
array of

powerSupply

<recordType name = "powerSupplyArray"
supportName = "generic" >

<include href = "common.xml" />
<!-- each element must be a powerSupply -->
<field name = "supply" type = "array”

elementType = “structure”
supportName = “generic” />

<field name = "alarm" type = "structure"/>
<field name = "timeStamp" type = "structure" />

</recordType>

October 2007 ICALEPCS 2007 26

Finding Fields

A client could ask for
− ai.value
− ai.input.value
− ps.power.value
− ps.current.value
− ps.voltage.value
− psArray.supply[0].power.value
− psArray.supply[1].current.value

	JavaIOC
	JavaIOC – What Is It?
	Features
	PV Database
	PV Introspection
	PV Data Interfaces
	org.epics.ioc.pv
	XML Parsers
	PV Naming
	Record Processing
	Record Scanning
	Support
	JavaIOC Data Model
	Finding Properties
	structure/recordType double
	double.xml
	Fields in double
	display.xml
	record instance
	Support Overview
	Analog Input Example
	Analog Input Instance
	powerSupply Example
	PowerSupply DBD
	powerSupplyArray
	Finding Fields

