Elements of Control
System Longevity

Stephen Lewis

ICALEPCS'O7
19 October 2007
Knoxville, TN

"In theory, there is no difference
between theory and practice. But in
practice, there is.”

—Yogi Berra

"Success comes from experience; but

experience comes from failure."
—Mark Twain

S. Lewis FOPAO4 2

LONG TENURE

We build controls for '30-year’
systems (job security?)
You wi// upgrade many times...

..and the first one may precede
commissioning (job pain!)
Goal: upgrades are not disruptive

FOPAO4

PITFALLS

Language
* Avoid fads..the mainstream may not be
what you like

Ditto for the fancy IDE

S. Lewis FOPAO4 4

PITFALLS

- Operating System?
» Few last as long as your system...

..and an old OS needs old {hardware,
people}
* How many are you supporting?

* Use a ‘glue’ layer for essential services

S. Lewis FOPAO4

PITFALLS

- Transport
« This is your middle-ware ‘backbone’

* Don't distort your architecture: map
your own concepts (name discovery,
congestion control, graceful recovery,
etc) to it

* Let it be asynchronous...

S. Lewis FOPAO4

PITFALLS

- Hardware and Network

» The rate of change here has been
astounding

* Plan to mix it up—like ‘crates’ with
free-standing 'smart devices'
Is each device its own server?

S. Lewis FOPAO4

PITFALLS

Your shopping list:
Hardware

« OS
» Language
- IDE

 Libraries

* For all host/target
combinations...forever

S. Lewis FOPAO4

DECOUPLING

"Decoupling, decoupling, decoupling.’
It's the web of dependencies that
get you...

How far does a change ripple?

« Solution: a few layers, and fewer
protocols

)

* No ‘cheating’ (reaching around)

S. Lewis FOPAO4

LAYERS

* Avoid middle layers
* 'Manager’ and 'Supervisor’ belong in
your org chart, not your architecture

Use self-configuring ‘gateways’ (bridges) to
solve simple fan-out issues

* Re-publish any 'value-added' in same
layer

« A 'flat' system is easy for clients
* The hierarchy should be in the naming

S. Lewis FOPAO4 10

DECOUPLING

* Pick a 'narrow’ protocol/APT:

S. Lewis

Easy to code to
Allows clients to be generic (‘tools’)
It rarely changes, thus...

Decouples server and client teams

They work in parallel
They don't talk much

May support multiple versions

FOPAO4

11

DECOUPLING

Use a fext file (sure, XML) between
major 'stages’, such as RDB and
processes

 Can easily create one (for consumer):;
can inspect one (from producer)

* TInsulates you from temporary failures,
version mismatches, etc

» Compatible with your code repository

S. Lewis FOPAO4 12

DECENTRALIZATION

Gives scaling
* No single-point of failure

« Graceful degradation without cascading
failures

* No congestion points
» Supports incremental build-up

Allows parallel life-cycles for
subsystems

S. Lewis FOPAO4 13

ASYNCHRONOUS

Have you had any deadlocks lately?

S. Lewis

Very hard to avoid (or recover from) with 3 or
more layers of synchronous elements: the
cascade effect

There are only two kinds of timing values:
those that have changed and those that will

Non-blocking protocol/API (message passing)
avoids this
Use a call-back for the hand-shake (transaction)

FOPA04 14

REQUIREMENTS

Most are implicit, not explicit
* 50:1 worst case

There are two kinds: those that
have changed and those that will
change
Don't code directly to them:

« Use (reusable) building blocks

Most are nearly universal for all controls

S. Lewis FOPAO4

SUMMARY

Decouple
Decentralize

Go 'flat’

Use text files
Go 'narrow’

Be asynchronous

S. Lewis FOPAO4

16

CONCLUSION

"All problems in computer science
can be solved by adding one more
level of indirection.”

"But that just creates another
problem.”

—David Wheeler

S. Lewis FOPAO4 17

	Elements of Control�System Longevity
	LONG TENURE
	PITFALLS
	PITFALLS
	PITFALLS
	PITFALLS
	PITFALLS
	DECOUPLING
	LAYERS
	DECOUPLING
	DECOUPLING
	DECENTRALIZATION
	ASYNCHRONOUS
	REQUIREMENTS
	SUMMARY
	CONCLUSION

