
Elements of Control
System Longevity

ICALEPCS’07
19 October 2007

Knoxville, TN

Stephen Lewis

S. Lewis FOPA04 2

“In theory, there is no difference
between theory and practice. But in
practice, there is.”

—Yogi Berra

“Success comes from experience; but
experience comes from failure.”

—Mark Twain

S. Lewis FOPA04 3

LONG TENURE

• We build controls for ‘30-year’
systems

• You will upgrade many times…
• …and the first one may precede

commissioning
• Goal: upgrades are not disruptive

(job security?)

(job pain!)

S. Lewis FOPA04 4

PITFALLS

• Language
• Avoid fads…the mainstream may not be

what you like
• Ditto for the fancy IDE

S. Lewis FOPA04 5

PITFALLS

• Operating System?
• Few last as long as your system…

• …and an old OS needs old {hardware,
people}

• How many are you supporting?

• Use a ‘glue’ layer for essential services

S. Lewis FOPA04 6

PITFALLS

• Transport
• This is your middle-ware ‘backbone’
• Don’t distort your architecture: map

your own concepts (name discovery,
congestion control, graceful recovery,
etc) to it

• Let it be asynchronous…

S. Lewis FOPA04 7

PITFALLS

• Hardware and Network
• The rate of change here has been

astounding
• Plan to mix it up—like ‘crates’ with

free-standing ‘smart devices’
• Is each device its own server?

S. Lewis FOPA04 8

PITFALLS

• Your shopping list:
• Hardware
• OS
• Language
• IDE
• Libraries
• For all host/target

combinations…forever

S. Lewis FOPA04 9

DECOUPLING

• It’s the web of dependencies that
get you…

• How far does a change ‘ripple’?
• Solution: a few layers, and fewer

protocols

• No ‘cheating’ (reaching around)

• “Decoupling, decoupling, decoupling.”

S. Lewis FOPA04 10

LAYERS
• Avoid middle layers

• ‘Manager’ and ‘Supervisor’ belong in
your org chart, not your architecture
• Use self-configuring ‘gateways’ (bridges) to

solve simple fan-out issues
• Re-publish any ‘value-added’ in same

layer
• A ‘flat’ system is easy for clients

• The hierarchy should be in the naming

S. Lewis FOPA04 11

DECOUPLING

• Pick a ‘narrow’ protocol/API:
• Easy to code to
• Allows clients to be generic (‘tools’)
• It rarely changes, thus…
• Decouples server and client teams

• They work in parallel
• They don’t talk much

• May support multiple versions

S. Lewis FOPA04 12

DECOUPLING

• Use a text file (sure, XML) between
major ‘stages’, such as RDB and
processes

• Can easily create one (for consumer);
can inspect one (from producer)

• Insulates you from temporary failures,
version mismatches, etc

• Compatible with your code repository

S. Lewis FOPA04 13

DECENTRALIZATION

• Gives scaling
• No single-point of failure
• Graceful degradation without cascading

failures
• No congestion points
• Supports incremental build-up

• Allows parallel life-cycles for
subsystems

S. Lewis FOPA04 14

ASYNCHRONOUS

• Have you had any deadlocks lately?
• Very hard to avoid (or recover from) with 3 or

more layers of synchronous elements: the
cascade effect

• There are only two kinds of timing values:
those that have changed and those that will

• Non-blocking protocol/API (message passing)
avoids this

• Use a call-back for the hand-shake (transaction)

S. Lewis FOPA04 15

REQUIREMENTS

• Most are implicit, not explicit
• 50:1 worst case

• There are two kinds: those that
have changed and those that will
change

• Don’t code directly to them:
• Use (reusable) building blocks

• Most are nearly universal for all controls

S. Lewis FOPA04 16

SUMMARY

• Decouple
• Decentralize
• Go ‘flat’
• Use text files
• Go ‘narrow’
• Be asynchronous

S. Lewis FOPA04 17

CONCLUSION

• “All problems in computer science
can be solved by adding one more
level of indirection.”

• “But that just creates another
problem.”

—David Wheeler

	Elements of Control�System Longevity
	LONG TENURE
	PITFALLS
	PITFALLS
	PITFALLS
	PITFALLS
	PITFALLS
	DECOUPLING
	LAYERS
	DECOUPLING
	DECOUPLING
	DECENTRALIZATION
	ASYNCHRONOUS
	REQUIREMENTS
	SUMMARY
	CONCLUSION

