TINE Control System Overview and Status

P. Bartkiewicz, P. Duval, S. Herb, H. Wu (DESY/ Hamburg)

and

S. Weisse (DESY/ Zeuthen)

TINE: A Quick Tour

- Three-fold Integrated Networking Environment (->Keep your eye on the word "Integrated")
- Mature Control System
 - CERN Isolde Spin-off (~1991)
 - All the usual central services :
 - Archive, Alarm, Naming, Security, Logging, etc.
- Small Footprint
 - TINE Kernel written in C (just like your Operating System) or Java
 - Berkeley Sockets (NO SunRPC, CORBA, or other 3rd Party dependencies!)
 - Either Single-threaded or Multi-threaded mode
- Easy to Install
- High Performance
- Plug and Play
- Scalable to very large machines!

HERA

- Large machine!
- 6.3 Km Proton-electron storage ring, collider
- Experiments at ZEUS, H1, Hermes, HeraB
- superconducting proton ring, RF cavities => QPS
- > 100000 control points

Principal Devices:

Device Type	Nr. of Units
Magnet PSCs	2000
RF Systems	230
Vacuum	3000
BPMs	800
Other beam measurement instrumentation	2000
Quench Protection System	2000
Other diagnostic instrumentation	1000
Air conditioning, water cooling	500

HERA FECS:

Shutdown on June 30, 2007

~160 Front-End Controllers (FECs)

Many Operating Systems!

Philip Duval - TINE Overview

Control Systems101

Control Systems (one way or another) have to deal with ...

- Distributed end points and processes
- Data Acquisition (front end hardware)
- Real-time needs (where necessary)
- Process control (automation, feedback)
- Central Services (Archive, Alarm, Name Resolution, ...)
- Security (who's allowed to do what from where?)
- States (Finite State Machines, sequencing, automation...)
- **Time synchronization** (time stamps, cycle ids, etc.)
- Databases (configuration, machine data, post-mortem data, ...)
- Statistics (control system itself, operation, ...)
- **Logging** (central, local, application, ...)
- Data transport (data flow, control system protocol, scalability)

TINE Protocol (1)

- Client-Server (classic)
 - Transaction based
 - Synchronous data access only
 - The "N-Client" Problem ? (do threads help?)
 - ExecLink("/HERA/BPM/WL167MX","ORBIT.X", ...)
- Publisher-Subscriber (nearly classic)
 - Connection Tables!
 - Synchronous/Asynchronous data access
 - The "10N-Client" Problem ?
 - AttachLink(..., DATACHANGE, 100, linkCb)
 - Callback events!

TINE Protocol (2)

- Producer-Consumer
 - Asynchronous data messages (Multicast)
 - The "N-Producer" Problem ?
 - AttachLink("HPENERGY",..., RECEIVE, 1000, linkCb)
- Publisher-Consumer (Producer-Subscriber?)
 - Like Publisher-Subscriber but:
 - Multicast group is a single connection Table entry
 - N = 1 !!!
 - AttachLink(...,DATACHANGE|NETWORK,100, linkCb)

TINE Protocol (2)

Philip Duval - TII

- **TINE Data Types**
- Primitives (byte, short, int*, long*, float, double, char*)
- Fixed-length Strings ("NAME16", "NAME32", "NAME64", ...)
- Doublets (FLTINT, "INTINT", "DBLDBL", "NAME32INT", ...)
- Triplets ("FLTINTINT", "NAME16FLTINT", ...)
- Quadruplets ("FLTINTINTINT", "INTINTINT", ...)
- Specials ("USTRING", "UNAME", SPECTRUM, VIDEO...)
- Bitfields (new to Release 4.0):
 - CF_BITFIELD8, CF_BITFIELD16, CF_BITFIELD32, CF_BITFIELD64
 - Data type: DBITFIELD
 - Bitfield Registry
- User-defined "Tagged Structures" !!!
 - Structure registered at both ends (client, server)
 - Client can 'discover' structure fields!

Hierarchical

Engineer's View or Machine Physicist's View

- Device is specified by :
 - Device Context (Facility in DOOCS, Domain in TANGO)
 - Device Server (or Group) (Device in DOOCS, Family in TANGO)
 - Device Name (Location in DOOCS, Member in TANGO)
- Data endpoint is specified by:
 - Property (Property in DOOCS, Attribute/Command in TANGO)
 - Are really 'methods' or 'calls'

Note: **Device Subsystem** is not part of the name space, but is a browseable element!

Instant Client Print ... Options ... Debug Tools ... Show Globals! Input Panel! Device Context Device Subsystem HERA Show Stock Properties Device Server **Device Name** Device Property Data Type Description Timeout Data Size X Position data 100 /HERA/HEPBPM/WL197 MX ORBIT.X @ Jan 27 16:35:08.026 READ POLL Draw Mode Histogra₁ ▼ History Autoscale OL723 MX ORBIT.X Log Scale

Philip Duval - TINE Overview

TINE Address Redirection

Wildcard calls (e.g. /TTF/QUAD/*/BITS2AMPS) still work!

Property Redirection (e.g. "Orbit.X.ARCH" -> central archive server)

Does BPM.P already exist for HERA?

-> Yes: Is same address as already registered?

-> Yes: Accept and increment reboot count

-> **No**:

Is the currently listed BPM.P for HERA running?

Yes: Refuse and send "in-use" message

No : Accept and update database

-> No : Accept and update database

Equipment Name Server (ENS)

Forward accepted requests to secondary name servers

Plug and Play (joining a group)

- ERF.WL registers with ENS as before
- ERF.WL registers group EHF with GENS Does group EHF exist ?

Yes:

Is ERF.WL a member?

Yes: Update device list if different

No: join group

No:

Create Group and register Group as Server in Context HERA with the ENS

- Clients see a "Server" called "EHF"
- Selected Device is redirected to the appropriate physical server.

TINE Client API...

- Fundamental API is :
 - Link based and Not Channel based!
 - Narrow Interface
 - NOT 'get', 'set', and 'monitor' !!!
 - Think of 'calls' a la RPC or RMI ...
 - Synchronous data acquisition
 - Asynchronous data acquisition
 - Callbacks, events

Philip Duval - TINE Overview

Atomic Set/Get, i.e. 'call'!

Client API: Synchronous Calls

e.g. A call to the orbit correction server:

din = tagged struct with optics, current orbit, beam parameters;

dout = tagged struct with new optics, projected corrected orbit;

ExecLink("/SERVICE/ORBCOR", "EFFCOR", dout, din, READ, 1000)

e.g. "Command" Properties: "RESET", "INIT", "START", ...

ExecLink("/HERA/Transfer/P", "STOP", NULL, NULL, WRITE, 1000)

WAIT

TINE API(Application Programmer's Interface)

- C, C++
- VB
- ActiveX
- Java
- C#, VB.NET (rudimentary, but more coming soon!)
- Command line scripts
- Python Bindings
- Plus ...

TINE and MatLab ...

Example: DORIS Orbit

Simple script ("M-file") to read and plot the DORIS orbit

```
[ORBIT]');
val = tineread('/DORIS/DOORBIT/#0
figure(1)
subplot(2,1,1)
bar(1:41, val.ORBIT(2:42))
xlabel('BPM index')
ylabel('x / mm')
                                                                                                     _ | D | X |
title(['DORIS Orbit, ' val.timestamp])
                                                           File Edit View Insert Tools Window Help
subplot(2,1,2)
                                                           DEB LAZ/ BBC
bar(1:41, val.ORBIT(44:84))
                                                                   DORIS Orbit, 26.09.07 20:05:27.831 VV. Europe Standard Time
xlabel('BPM index')
vlabel('v / mm')
                                                                                       30
                                                                           15
                                                                                20
                                                                                   25
```

TINE and LabView ...

- "Do it yourself" + your hardware API
 - Use those Windows drivers your hardware comes with!
- EPICS IOCs (asyn drivers) + Epics2Tine
- LabView VIs + TINE LabView
- DOOCS + DOOCS API
- CDI (Common Device Interface) !!!
 - Bus plugs for CANOpen, SEDAC, RS232, SiemensPLC, TwinCatADS, Libera, ... (asyn?)
- TICOM (TINE CanOpen Manager) WPPB21

TINE Archive System

(lickity split data retrieval!)

Example: Multi-Channel Analyzer:

All temperatures as "snapshot" (vs. selected reference)

Histories of selected sensors:

Histories of machine operation parameters:

Philip Duval - TINE Overview

Operations + Availability

Operations Overview: a Typical Day at DESY-2

HERA Console Applications

(rich clients)

< 200 Console Applications available

~ 20 Console Applications needed for Normal Operation

Console Applications generally "Rich Clients"

TINE Clients: Rich Clients

TINE and Java ACOP (for rich clients)

No Frameworks!

Use Eclipse, NetBeans, or whatever...

Browse
Control system
at **design-time**with property
panels or
customizer...

TINE and Java ACOP + COMA

(for simple clients)

No Frameworks!

Lightweight!

Just start a coma application (e.g. an empty coma application)

Browse
Control system
at **run-time**with
customizer...

TINE Video (Multicasting + Scheduling)

.5 Mbyte Video Frames @ 10 Hz multicast (100 Mb ethernet). (also runs fine @ 20 Hz)

Uses the **NETWORK** switch => as many clients as you want!

Server calls the
Scheduler when a
new frame is
grabbed => as realtime as it gets !!!

TINE and Web Tools

(Web2C: Web-based Controls Client)

TINE Platforms ...

- DOS
- Win16, Win32 (9x, NT, 2K, XP, ...), Win64 ?
- Win CE (in progress)
- Unix (Solaris, HP, OSF, SGI, Ultrix, ...)
- Linux, FreeBSD (32 bit, 64 bit)
- ELINOS
- MAC OS X
- VxWorks
- VMS (Vax, Alpha)
- LynxOS
- NIOS (plugs, single-threaded LWIP, ...)
- Java

TINE and Connectivity to other systems

- Already embedded in DOOCS
- Epics2Tine runs on any EPICS ioc
- Connect to STARS/COACK via STARS

bridge

Tango2Tine

TANGO2TINE example MD2
Gonjometer

TINE and DOOCS

Always a close relationship between the two.

- Imagine (we're not there yet, but imagine anyway):
 - Download anything from doocs.desy.de; Install it and use it.
 - Download anything from tine.desy.de; Install it and use it.
 - And it all fits together seemlessly (no tweaking)!

- Petra 3
 - 2009: High-brilliance 3rd generation synchrotron radiation source
- DORIS
- Linac2/Desy2
- PIA
- FLASH
- PITZ (Zeuthen)
- EMBL Hamburg (Beamlines)
- GKSS Hamburg (Beamlines)
- PF Beamlines (KEK)
- LLRF at FermiLab

TINE Workshop

- http://tine.desy.de
 - -> workshop 2007

- http://tine.desy.de
 - Visit the download section and chose your platform.
 - Use setup tools available.
 - Installation takes a few minutes
 - Don't expect too many miracles (you might have to read a README.txt or two).
- Email to tine@desy.de

