
SECURE REMOTE OPERATIONS OF NSLS BEAMLINES WITH (FREE)NX 

Zhijian Yin, Peter Siddons, BNL, Upton, NY 11973, USA

Abstract 
In light source beamlines, there are times when remote 

operations from users or collaborators are much desired. 
This becomes challenging, considering cybersecurity has 
been dramatically tightened throughout many facilities.   
Remote X-windows display to Unix/Linux workstations 
at the facilities, either with straight X-traffic or tunneling 
through ssh ("ssh -XC"), is quite slow over long distance, 
not quite suitable for remote control/operations.  We 
implemented a solution that employs the open source 
FreeNX server.  With its efficient compression and proxy 
server to reduce X round-trip traffic, the bandwidth usage 
is quite small, and the response from long distance is very 
impressive.  The setup we have, involves a FreeNX server 
configured on the Linux workstation at the facility's end 
station.  Remote users can use free downloadable clients 
(Windows, Mac, Linux) at the remote site to connect to 
the FreeNX servers, through the ssh gateway at the lab.  
All traffic are tunneled through ssh, and the response time 
is good enough that remote operations are routinely 
performed.  We believe this technology can have great 
implications for other facilities. 

 

INTRODUCTION 
Remote operations have been a goal for light source 

users, ever since the internet revolution in the 90s. Many 
methods has been tried, for example, web servers, 
together with Java programing has been tried for remote 
users to monitor and control the experiments at light 
source beamlines.  With the tightening of cybersecurity 
and the general requirement that web servers not to open 
to the public unless absolutely necessary, this mode of 
operation is getting more and more difficult. 

X-Windows was developed with networking in mind. 
As a matter of fact, X-Windows is a network protocol.  
Within short distance, the X-Windows remote display 
works well, which is also true with the secure version of 
remote access, SSH.  With compression, "ssh -XC", X 
display works satisfactorily within short distance.  
Researchers routinely use X-windows remote display to 
run applications remotely. 

It's a different story for longer distance, which is a 
situation we have to deal with when we intend to do 
remote operations for facility users or collaborators who 
are in other institutions. Network latency caused by media 
delay, switch/router delays etc., makes X remote display 
painfully unresponsive.  The reason behind this is that X 
protocol involves many round-trip "checks and balances" 
when displayed remotely.  The large bandwidth usage 
together with the accumulation of network latencies 
makes response very slow. 

A group of software developers at NoMachine.com 
invented an ingenious solution to the problem. The main 

ideas are to compress X protocol traffic using differential 
compression and more importantly, to reduce the number 
of X protocol round trips across the network by using a 
proxy X server. The differential compression algorithm is 
smart enough to discard useless information, cache 
messages that could be used later and use different 
compression scheme for images and text.  For detailed 
technical information, see NX documentation.[1] 

Once NX server and clients are made to work, many 
people are amazed how responsive it is and how little 
bandwidth it uses. With that kind of responsiveness, it's 
not hard to imagine using it for remote monitoring, 
control or operations.  Below we will describe our 
implementation at many of the NSLS facility beamlines. 

 

CONTROLS AT THE NSLS FACILITY 
BEAMLINES 

In many of our facility beamlines, we employ Linux 
workstations with X-Windows applications for the control 
of beamline optics and experimental end stations, as well 
as data acquisitions.  The control system is based on the 
popular EPICS[2] toolkit.  A VME based single board CPU 
(typically Motorola MVME5500 or MVME230x) running 
EPICS IOC server applications on top of the open source 
real-time operating system RTEMS[3], is used to drive the 
hardwares (VME controllers for motors, scalers, A/D, 
etc.). EPICS clients (medm screen[4], SPEC[5]) at the 
Linux workstations, communicating with the EPICS  IOC 
server through Channel Access, provide the interfaces for 
users or beamline operators to control their instruments or 
experiments. 

For security, the control network is isolated in a private 
LAN, with the Linux workstation containing dual network 
interfaces, eth0 to the public network, and eth1 to the 
controls network.  Per agreement with the IT security 
division at the lab, there is no routing between eth0 and 
eth1.  To access the beamline's control network, or to gain 
access to the control to the beamline, one needs to login to 
the Linux workstation, which is administered by the local 
beamline scientist or IT personnel. 

NX SERVER, FREENX AND NXCLIENTS 
To set up the NX server on the Linux workstation, one 

have two choices: (1) Download the binaries from 
www.nomachine.com, where the personal server (two 
simultaneous connections) were made free some time ago; 
or one can purchase the commercial version, with 
technical support.  (2) Use FreeNX, a package containing 
a suite of shell scripts using the core NX libraries, which 
nomachine.com GPLed and donated to the public domain.  
At the time when we were experimenting the NX server 
in 2005, the free binary server from nomachine.com was 

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA WPPB11

Major Challenges

421



not available (only a demo version was), but we got the 
FreeNX working. 

FreeNX can be downloaded from many sources. It 
comes with binaries in many flavors of Linux, as well as 
source code.  In our beamlines, where Debian distribution 
is used,  FreeNX installation and configuration is straight 
forward: with Advance Package Tool (apt) in Debian, 
other software packages which FreeNX depends on are 
installed automatically, which mostly include "ssh", 
"expect" etc. 

 
On the remote user's end, they just need to download 

the "nxclients" software from nomachine.com.  Nxclient 
is close-source software, but it's a free (as in beer) 
download. It's available in the popular platforms: 
Windows, Mac, and Linux.  Configuring the nxclient is 
also easy, fill in the hostname and port number for ssh 
(normally this is "22"), and one is ready to go. 
Connections types (MODEM-ISDN-ADSL-WAN-LAN) 
can be chosen to determine the compression level.  In the 
office environment, or at home with cable modem 
broadband, the default value of ADSL works fine. Once 
the configuration is saved, one is at the login window, 
where "username" and "password" are used for 
authentication. 

CYBERSECURITY AT BNL AND SSH 
PORT FORWARDING  

 
The above arrangement (FreeNX server and nxclient) 

works quite well inside of our laboratory.  Scientists and 
engineers liked the responsiveness, and the familiar 
"gnome" or "KDE" windows manager (chosen at the 
nxclient configure screen), and they start to use the setup, 
prefer it over the standard "ssh -XC".  To do real remote 
operations from outside the laboratory, for example, from 

staff's home or users in their home institutions which 
could be hundreds of miles away, where NX technology is 
to shine, one more “obstacle” has to be overcome: 
cybersecurity. 

At BNL, as in many institutions, cybersecurity has been 
dramatically tightened in the last couple of years.  The 
current cybersecurity perimeter defense configuration at 
BNL involves firewalls, gateways, proxy servers. The 
only way for staff or users to access is VPN (staff only) or 
ssh gateway accounts.  Thus, a user intending to remotely 
access the beamline computers has to login to the ssh 
gateway machine first, and from there, ssh to the beamline 
computer.  It's a two step process. 

Thus we face a problem: the nxclient needs a 
"hostname" and "port number".  With the perimeter 
defense, most of the hostnames at BNL are not routable or 
resolvable.  Fortunately, ssh has a "port forwarding" 
feature,[6] also known as "ssh tunneling", to map the 
remote site tcp port (e.g., 22 for ssh in our case) to a 
localhost port via the ssh gateway.  An example in Linux: 
"ssh -L localport:remotehost:22 username@ssh_gateway".  
In Windows or Mac, one just need to configure ssh port-
forwarding for the ssh client. With this tunnel set up, one 
can configure the nxclient to use "localhost" and 
"localport".  

 

PUTTING IT TOGETHER: REMOTE 
OPERATIONS WITH FREENX 

Once logged in, the user is presented to the familiar 
"gnome" or "KDE" window manager, just like login 
locally.  All the features are available, and almost all X-
Window applications run fine.   The  screen  snapshot 

displays for beamline motors and scalers.  The great 
advantage of NX, compared with other remote X-servers 
(e.g., exceed), is the responsiveness over long distance.  
In a typical remote login from home, with cable modem 
broadband, the authors have no problem to run 
experiments at the beamline.  

The FreeNX/nxclient combination has been made to 
work successfully at NSLS since December 2005.  It 
provides a powerful tool for beamline scientists and 
engineers to remotely diagnose and troubleshoot 
instrumentations, and users and collaborators for remote 
operations.  For example, just recently a scientist (one of 
the authors, P.S) was in Australia on a business trip when 
one of his prototype detectors in use at one of the NSLS 
beamlines got reset due to power loss.  Users were 
confused and emailed the scientist for help. The scientist 
was able to remote login with nxclient, displayed most of 
the detector parameters with graphical tools (medm 
screen, similar to above) and in a snap, set the correct 
parameters from thousands of miles away. 

 
   

 

 

Figure 1: nxclient configuration.

(Fig. 2) shows a remote window, with EPICS medm 

WPPB11 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Major Challenges

422



CONCLUDING REMARKS 
Smart and efficient compression, together with proxy X 

server and other tricks make NX the most responsive 
remote desktop for X-Windows system today.  Taking 
advantage of the great responsiveness of the NX 
technology, as well as port-forwarding feature of SSH,  
we successfully implemented FreeNX for remote 
beamline diagnostics, data processing and operations at 
NSLS. As all traffic are tunneled through SSH, these 
operations are secure. If so desired, additional security 
keys can be generated and dispatched to authorized users.  
The solution is generic, no programming is involved.  We 
believe this solution could have great implications for 
many facilities. 

 

ACKNOWLEDGMENTS 
We thank the developers at nomachine.com, and the 

FreeNX package developer and maintainers for their great 

work. We'd also like to thank staff and colleagues at BNL 
for testing and feedback.  This work is performed at the 
National Synchrotron Light Source, Brookhaven National 
Laboratory, which is supported by the US Department of 
Energy, Office of Science, Office of Basic Energy 
Sciences, under Contract No. DE-AC02-98CH10886.  

 

REFERENCES 
[1] http://www.nomachine.com/ 
[2] http://www.aps.anl.gov/epics 
[3] http://www.rtems.com/ 
[4] EPICS medm extension: http://www.aps.anl.gov/epics/ 

extensions/medm/index.php 
[5] www.certif.com 
[6] SSH user's manual 
 
 

 

 

Figure 2: Snapshot of remote screen. 

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA WPPB11

Major Challenges

423


