
EPICS CA E HA CEME TS FOR LA SCE TIMED A D FLAVORED
DATA *

J. Hill, LANL, Los Alamos, NM 87545, U.S.A.
Abstract

Currently, the subscription update event queue in the
EPICS server is capable of carrying payloads consisting
of a channel’s value, time stamp, and alarm state. The
complexity of the LANSCE macro pulse beam structure
requires unique capabilities from the control system,
which is currently a hybrid of EPICS and the original
VMS-based LANSCE Data System. A homogeneous
EPICS based system with a tool based approach to the
development of modular application programs is the
favored post upgrade configuration, but this evolves new
requirements for EPICS. Specifically, EPICS Channel
Access (CA) Clients must dynamically specify the
LANSCE macro pulse beam gate combinatorial, and a
time window, to be sampled when they subscribe. EPICS
upgrades fulfilling these requirements, including generic
software interfaces accommodating site specific event
queue payloads and client specified subscription update
filtering expressions, will be described.

LA SCE
The Los Alamos Meson Physics Facility (LAMPF) was

originally designed to be a versatile machine for medium-
energy (800 MeV) nuclear physics experiments. It had
three injectors and could simultaneously accelerate
positive hydrogen ions (H+), negative hydrogen ions (H-)
and polarized negative hydrogen ions (P-). These three
beams could all have different intensities, duty factors,
and even different energies - depending on experimental
needs. As time progressed, the facility gained capabilities
evolving into the Los Alamos Neutron Science Center
(LANSCE). Today LANSCE can simultaneously generate
four H- beam types and two H+ beam types. It services
several experimental facilities including a proton storage
ring, a low-intensity neutron research facility, proton
radiography, ultra-cold neutron source, isotope
production, and a proposed materials test station.

Developed during the infancy of computer control
systems, the architecture of the original LAMPF /
LANSCE control system (LCS) has elements of data
acquisition along with elements of traditional computer
control system architectures. It employs a locally
designed centralized hardware IO system called RICE
(Remote Instrumentation and Control Equipment). One of
the more interesting and useful features of RICE is its
ability to do "Timed" and "Flavored" reads.

A "Timed Read" refers to sampling the signal at any
point within the 8.2 millisecond machine cycle. The time
to sample is normally specified relative to the start,
middle, or end of a particular beam gate, with the default
being the start of the cycle.

A "Flavored Read" refers to the ability to schedule the
read for a particular machine cycle containing a desired
configuration of beam gates. A “Flavor” is configured by
specifying for each beam gate in the timing system
whether it must be present, must be absent, or is not
relevant. Therefore, with 96 gates there can be up to 3ଽ଺
possible flavor combinations, but in practice only roughly
a dozen “Flavors” are regularly used. These represent
various (meaningful) combinations of the six beam
destination gates along with a handful of diagnostic
trigger gates, but more esoteric flavors for diagnostic and
experimental purposes are considered to be essential.

Any signal in the RICE system can be sampled either
un-timed (at anytime), timed, flavored, or both flavored
and timed (a common configuration).

If a particular signal (a current monitor, for example) is
typically read at the same time and flavor, its record in the
LCS database will contain default timing and flavoring
information. If several beam flavors are monitored by the
same current monitor, it will usually have multiple entries
in the LCS database - each with a different externally
visible Process Variable (PV) names. Essential LANSCE
physics applications have knowledge of, and are
dependent on, the flexibility of the RICE system. The
LCS system software interfaces specify a "device read on
demand" paradigm. The multiplexed RICE IO system
requires that we limit the number of timed/flavored device
read interactions to only those that are initiated by active
clients. Application programs will typically request
scheduling of a time and flavor qualified read from a
RICE channel and then block for completion. Completion
requires an available time slot on the RICE multiplexer
occurring when the requested flavor is available. When
comparing this approach with EPICS it is important to
observe that this guarantees that the sensor was sampled
after the read request was initiated in software.

EPICS CO TROL SYSTEM
An EPICS Input Output Controller (IOC) is configured

with Database Records implementing function blocks for
various purposes including logical IO, numerical
calculation, and ordered sequencing. The EPICS Channel
Access (CA) internet communication subsystem is based
on a publish-and-subscribe communication model where
clients subscribe for updates, servers publish updates to
subscribed clients, and records post state change events to
servers. A channel is a virtual communication link
between a client application program and a process
variable (PV) exported by a service. EPICS clients issue
asynchronous read, write, and subscribe requests to the
process variable in the service. Clients are notified when
the connectivity of a channel changes. ___

Work supported by US Department of Energy under contract
DE-AC52-06NA25396.

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA WPPA24

Control System Evolution

365

Thread Based Scheduling within an IOC
The EPICS IOC is implemented using a substantial

number of independent threads of execution. This was
done originally to manage proper deterministic response
to external events, to keep the different components of the
system independent, and to manage the ordered
degradation of the system under load. This design is also
an opportunely synergistic match for modern light weight
thread based operating systems running on modern multi-
core CPUs.

One of the most essential requirements underlying the
original EPICS design was that regular periodic
processing of EPICS Records should not be disturbed by
influences from outside of an IOC. This guarantees that
time periodic algorithms such as PID loops are properly
maintained, and that there will be proper deterministic
response by EPICS Records to state changes detected in
the sensors. This design recognizes that the load induced
by Record processing is measurable when the IOC starts
up, and is predictably fixed thereafter. In contrast, the
externally induced load on the CA server by its clients is
less predictable. It is therefore necessary for EPICS
Record processing threads to execute at relatively higher
priorities and for the CA Server threads to execute at
relatively lower priorities.

Event Queue – Theory of Operation
Communication between EPICS Record processing and

the CA server occurs via subscription update events
stored in the order of their occurrence on an event queue.
Considering that potential strongly exists for an EPICS
record’s subscription update event production rate to
significantly exceed the CA Client’s event consumption
rate, the event queue linking the two subsystems must be
designed so that EPICS Record processing never blocks
for a slow client. When there is a burst of updates, the
queuing subsystem needs to avoid discarding intermediate
updates. When the sustained production rate exceeds the
client’s sustained uptake rate, then the queuing subsystem
needs to keep subscriptions current while at the same time
discarding some of the intermediate updates which would
otherwise force the execution of EPICS Records to block
when broadcasting updates to the event queues of each
client. Another central pillar of the design is that, as the
client load on the IOC increases, any induced load on the
EPICS Record processing threads shall be minimized.

Event Queue – Existing Design Limitations
Currently a ring buffer data structure is used to

implement the event queue. That design is efficient, but
very inflexible. Each fixed-sized entry in the ring buffer
can store only the channel’s scalar value, alarm state, and
time stamp. This means that these are the only EPICS
parameters that can be delivered in an instance-in-time
correlated package. For example, snapshots documenting
events occurring in the system can’t contain multiple
process variables, and the EPICS Record and or device
specific codes are unable to extend the payload associated
with an event. It is not possible to record the current state

of the LANSCE beam gates in the event payload.
Currently, array value state change events, but not the
array value, are stored on the event queue, and we are
therefore much less likely to fully document bursts of
activity for array channels. Furthermore, reproducing LCS
timed read capabilities requires indexing of a subset of the
array elements stored in the event payload based on its
position in time, but metadata linking array index
increments with time aren’t visible to clients. These
limitations in the legacy EPICS event queue design
prohibit on-the-fly, ad-hoc, application driven flavoring
and timing specifying experiments that are fundamental to
productive beam optimization activities at LANSCE.

The device and project independent view presented by
client side programming interfaces is a positive facet of
the EPICS tool-based-approach we endeavor to preserve.
Modest upgrades to preexisting project portable tools, for
example operator interfacing and archival clients,
allowing site specific configuration parameters such as the
necessary LANSCE specific flavor of beam to be
specified will be required. The intent is for such tools to
remain generic while allowing project specific
subscription update filtering configuration using project
portable interfaces. At LANSCE, an abstract view of
hardware capabilities will facilitate future upgrades.

Processing capacity of modern CPUs significantly
exceeds those of the original EPICS installations, but we
must be cognizant of a large installed base of legacy
processors and a desire to remain within elemental
embedded processor capacity. CPU efficiency consistent
with past expectations is therefore a design goal.

Event Queue –Memory Management Upgrade
The efficiency of the original event queue design

resulted from identically sized payloads. All of the
memory for the queue was pre-allocated, and so a size-
generalized (pool of random sized blocks) dynamic
memory allocator wasn’t used. Size-generalized
allocators, while quite adequate in performance for many
general purposed programs, must be prudently employed
in long lifespan programs running in limited resource
embedded environments. There is an inescapable tradeoff;
the random sized block allocation pool can either be prone
to fragmentation over time, or it can be prone to
increasing inefficiency as the number of blocks in use
increases [1]. At the opposite end of the efficiency
spectrum can be found free list (pool of fixed-sized
blocks) based memory allocation schemes [2].

Consequently, there is a dilemma; the best level of
efficiency requires size fixed allocation while flexibility
requires inefficient size-generalized allocation. We
observe that it’s typically sufficient for an event payload
data structure to be compile time fixed to the EPICS
Record and or the Device that is posting an event, or
based on a list of fixed-sized blocks (for arrays). The
solution is to move the event producer, and its memory
allocator, to plug-compatible module specific to
implementing the EPICS Record, or to interfacing with a
particular Device. Within the EPICS Record and or

WPPA24 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Control System Evolution

366

Device dedicated module size-dedicated free lists can be
used to allocate event data structures efficiently.

A solution is apparent but two issues remain. One,
EPICS Record and or Device independent software must
somehow efficiently interface with data stored in a plug-
compatible module’s proprietary format. Two, we must
arrive at a mechanism whereby the allocated memory can
be returned to the allocator’s free list only after the last
reference to it on the client dedicated event queues is
consumed.

The solution to the first problem is Data Access [3][4] -
a plug-compatible cataloging interface for proprietary data
containers along with a support library for copying
between proprietary data containers. The cataloging
interface has functions for traversing all of the parameters
in a container, for finding a particular parameter in a
container, and for assigning one container to another
container. Using this interface, we can implement a
messaging system without requiring compile time
knowledge of the message’s data structures – a unique
feature. Consequently, we can transport EPICS Record
and Device proprietary event payloads on a generic
subscription update event queue.

For a solution to the second issue a prominent design
pattern, the reference counting smart pointer [5], is
employed. This value added pointer class increments a
reference count when a pointer instance is copied,
decrements that count when a pointer instance is
destroyed, and calls a plug-compatible memory de-
allocation interface when that count decrements to zero.

Event Queue – Filter Upgrade
Productive beam tuning and optimization require that

timing and flavoring specific experiments be set up ad-
hoc and on-the-fly by application programs. A tool based
approach to the development of EPICS application
programs implies that EPICS clients must somehow
specify the LANSCE specific timing and flavoring data
capture constraints while at the same time preserving the
site independent nature of the EPICS components.

Our solution is to modify the CA client side API and
protocol, establishing a subscription, to include an
optional character string specifying a generalized filtering
logical expression operating on the parameters in the
event payload. If the generalized expression tests true then
a subscription update is forwarded to the client, and
otherwise it is suppressed. At LANSCE, this feature will
filter for the flavor of beam that is requested by the client.

Filtering updates against a logical expression character
string is certainly a device and project independent
approach requiring minimally invasive upgrades to
preexisting tools, but performance is a concern. Our intent
is to employ one of the high quality open source
implementations compiling expressions into efficiently
executed byte code.

Miscellaneous Issues
EPICS CA clients query various properties of the

process variable such as the units, limits, or display

precision. Expansion of this set to include the magnitude
of the index of the first array element, the magnitude of a
single array index increment, and the units of these index
magnitudes is necessary. For LANSCE timed data the two
magnitude parameters would specify the time offset of the
first element, and the inverse of the array’s sample rate.

LANSCE applications expect that the sensor is sampled
after the read request is initiated in software, but EPICS
doesn’t guarantee this. The proposed solution is new
support for one-update-only subscriptions.

LANSCE applications expect correlated read
capabilities where a hardware read of multiple signals is
constrained to occur within the same machine cycle - a
challenging requirement for a distributed system such as
EPICS where the hardware being read might be on
multiple IOCs. The traditional EPICS option is correlating
after the fact using the data’s time stamp. A new option
might be filter expressions constraining such reads to
modulo ௧ܰ௛ occurrences of a flavor in modulo ܯ௧௛ super-
cycles along with event payloads including the super
cycle occurrence index synchronized across IOCs by the
timing system. A support library might query the current
super cycle index, compute an index offset, schedule the
reads to occur after when setup is likely to complete, and
reschedule the data take in the unlikely event of
unsuccessful on-time setup.

At LANSCE potential exists for the occurrence rate of
certain flavors to induce excessive load on the system.
The proposed solution is for device specific code to
decimate the record processing of commonly occurring
flavors. The machine cycles selected for decimation
would be identical in all IOCs as synchronized by the
timing system.

CO CLUSIO
EPICS upgrades accommodating LANSCE data

acquisition requirements are being installed. Our
implementation is consistent with the EPICS site
independent tool based approach, and consequently we
hope that these new capabilities will improve the overall
utility of EPICS expanding its intersection into the
domain of data acquisition systems.

REFERE CES
[1] D. Knuth, “Fundamental Algorithms, Third Edition,”

Addison-Wesley, 1997, pp. 435-456.
[2] T. Cormen et. al., “Introduction to Algorithms,

Second Edition,” MIT Press, 2001, pp 210 - 212.
[3] J. Hill, “Next Generation EPICS Interface to Abstract

Data,” ICALEPCS’01, San Jose, 27-30 Nov 2001.
[4] R. Lange, “Data Access – Experiences Implementing

an Object Oriented Library on Various Platforms”,
ICALEPCS’01, San Jose, 27-30 Nov 2001

[5] S. Meyers, “More Effective C++,” Addison-Wesley,
1996, pp 159-213.

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA WPPA24

Control System Evolution

367

