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Abstract 
Operational tools, for the purposes of this paper, are 

specifically those software applications which are used in 

the context of operations, to analyze or optimize a large 

scientific instrument. At SLAC, such tools for online 

accelerator physics, have been in continuous development 

for 20 years. This paper first reviews those tools from the 

perspectives of their scientific functionality and 

implementation. Present operational software 

developments are then introduced, together with the 

infrastructure created to enable migration from the host 

computers and operating systems on which those tools 

have run in past, to the new systems. Some techniques 

and experiences in bridging EPICS, CORBA, Matlab, and 

Eclipse are included.  

INTRODUCTION 

The first part of this paper presents a review of the 

scientific software applications that have been developed 

for use in the particle accelerator complex at SLAC. Such 

tools are concerned with the diagnostics and optimization 

of accelerators, typically by applying accelerator 

modeling and numerical methods to online instrument 

data, and applying the results to the control system. 

Examples of such systems are “Correlation Plots”, which 

is a facility for conducting small ad-hoc experiments, 

orbit correction, beam-path modeling, lattice matching,  

feedback, model diagnostics, beamline diagnostics, 

calibration, and beam-based alignment, and other tools for 

online experiments.  For many years at SLAC, these have 

all been collocated in a single executable, which enables 

very tight application integration. Those mature, and very 

successful, applications are described first. Then we 

describe present work to transition those existing 

applications, plus new tools and methods that have been 

enabled by advances in technology, to new architectures, 

in both hardware and software. This includes a description 

of the foundational infrastructure that we are putting in 

place to support both the migration, and scientific 

scripting directly from tools like Matlab, Excel, gnuplot, 

and so on. Lastly, we introduce the long term application 

infrastructure we are developing for our vision of 

the architecture required for online accelerator science 

over the next decade.  

THE SLAC CONTROL PROGRAM 

The central online operational tool used at SLAC has 

been the "SLAC Control Program" (SCP). This single 

executable incorporates all scientific applications that we 

initially wrote for the Stanford Linear Collider, and all 

SLAC accelerators and beamline experiments since. The 

SCP is composed of >2M lines of high level code, 

mostly Fortran, some C/C++, implemented in 48 

dynamically linked libraries, running on Alpha/VMS 

hosts. It mostly uses a proprietary control network (slcnet) 

to communicate with iRMX front-end processors and, 

notably, EPICS  (Experimental Physics and Industrial 

Controls System) front-end processors using a specially 

crafted control network message-code bridge system 

called the SLC-aware-IOC, implemented itself in EPICS 

Input/Output Controllers (IOCs). All the scientific tools 

and all other control displays, such as magnet, BPM, and 

RF setup and operation, co-reside in a single instance of 

the SCP executable. The user interface is shown in Figure 

2. In total there are ~3500 panels in the SCP, only some 

relatively small fraction of which are involved with 

operational scientific applications.  

 

Figure 1: Transitionary phase of SLAC online physics 

software tools. Physics tools are being moved from a 

legacy Fortran/C VMS system, to Java/Eclipse on Linux; 

matlab is helping to bridge the gap. 

An advantage of implementing applications in this 

monolithic suite of dynamically linked libraries, is that 

they are interoperationally very tightly integrated. All 

persistent state data of every application is available to 

every other application, without, in fact, a strict API or 

layered software architecture, or formal state sharing 

mechanism, and every application can directly call 

functions of any other. Although informal, this has proven 

very effective in the specific lifetime of this system, 

~1985 to the present.  

SELECTED SCIENTIFIC APPLICATIONS 

OF THE SCP 

This section reviews some of the scientific applications 

of the SCP. These are now very mature and include 

significant scientific utilities and usability features. 
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Figure 2: The user interface is composed of 3 main 

screens: i) a "panel" screen housing all the “buttons” of 

the Graphical User Interface (there are no pull-down 

menus, sliders, dials etc), ii) a graphics screen on which 

all data is presented, mostly in tabular or graphical form, 

and iii) a continuously updating message window 

that presents all messages relating to what the individual 

SCP user is doing in one half, and all global messages of 

the accelerator in general in the other half.  

Beamline Plotting 

A utility application that can plot an arbitrary function 

given by coordinate pairs along a beamline, is used to plot 

beam position data, dispersion, any twiss parameter, 

calculated orbit correction etc, by Z location. A notable 

feature is that it can augment the ordinate axis with 

meaningful information, such as lattice description and 

region names; and it can estimate the number of device 

names that can meaningfully be inscribed onto the axis. 

 

Figure 3: Orbit fitting in the SLAC Control Program. This 

brings together orbit acquisition, save/restore 

configurations, and beamline  orbit plotting. 

The beamline plotting system is used by many 

applications of course; among them orbit plotting and 

orbit fitting (see figure Figure 3). Two very heavily used 

applications are Orbit Correction and Correlation Plots. 

Orbit Correction 

The mechanism of Orbit Correction has been described 

many times elsewhere, but for the purposes of describing 

some interesting specializations of it developed for the B-

factory at SLAC, it is first outlined briefly here. The role 

of orbit correction (sometimes called “Steering”) is to 

reduce the RMS of the beam orbit and hence overall 

emittance. In its simplest form, it reads the value of beam 

position measurement devices (BPMs) in the beamline 

section to be corrected, and calculates new energization 

levels for corrective lattice devices (typically “corrector” 

dipoles), by solving the system of linear equations which 

relate the effect of each the corrective device on the beam 

position at each BPM, for the present orbit offset values, 

and then changing the energization level in the correctors 

by the sign reversed solution value. That is, it solves the 

matrix equation: 

 

min || Ax b || 2

subject to xj < xj max

 

  

where A is the matrix of coefficients of the system of 

equations relating the effect of each corrector xj  on each 

BPMbi. Typically, these coefficients are precomputed 

from the beam lattice model (though they may be found 

experimentally). For X plane orbit correction using only 

X-plane correctors the elements of A  would be the so-

called R12s. The “orbit correction problem,” is then 

formed by the unknown x , being the vector of desired 

corrector changes (sign reversed), and b being the vector 

of present BPM readings*. At SLAC, two main numerical 

methods are used to compute the minimization: Micado, 

and a specially formulated Singular Value Decomposition 

(SVD).  

Some interesting facilities have been developed in the 

context of SVD for orbit correction at SLAC. The first is 

an extension of the SVD numerical method itself. It is to 

include interval constraints on the solution elements x j  

and so include the practical limits of corrector maximum 

settings directly in the numerical problem. This is done by 

casting the eigenvalue decomposition done by the SVD, 

which eliminates the basic problem of matrix degeneracy 

inherent in the lattice of the B-factory accelerator, into a 

space in which the solution elements’ interval limits can 

be posed in a minimization problem which can be given 

to a solver that can accept solution intervals, but not 

singular objective matrices ( A ). These two numerical 

solvers were formerly mutually exclusive, since the SVD 

itself does not include solution intervals, and even robust 
                                                           
* Don’t be confused by the use of the letter x above to designate both the 

unknown vector in the matrix form of a system of linear equations, and 

to designate the X plane of an orbit 
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Chi Sq methods, which can include intervals, do not work 

well to solve near-singular systems. This hybrid 

numerical method is described fully in [1].  

Both the beam offset from the main axis (in X, Y, or in 

a plane coupled region X and Y together) may be 

minimized, together with dispersion simultaneously. This 

is all done by constructing the objective  matrix A as a 

block matrix of appropriate sub-matrices, and weighting 

the blocks appropriately [2]. The block matrix 

characterizing dispersion, which would be rows of R126s 

added under the R12s of the orbit block matrix in A, is 

nominally weighted 0.05 (so the orbit block would be 

weighted 0.95), though this can be changed from the user 

interface.  

Other additions include: 

1. Either the model transport “R” (or sometimes 

called “T”), or, for a ring, the closed obit “C” 

elements, can be used to form the orbit block 

of the objective matrix A 

2. If numerically underconstrained, the problem 

can optionally be posed such that the particular 

solution will be that which would result in the 

smallest absolute corrector values 

3. Residuals that are at high variance compared 

to the others, may well correspond to BPMs 

which are simply reporting incorrect 

measurements. The equations for such BPMs 

can be removed according to a user specifiable 

residual value “sigma-cut”. Failing BPMs are 

reported, then removed from the problem, and 

the minimization is repeated. Reported BPMs 

can be interpreted as a prompt to check the 

hardware 

4. The orbit position and angle can be held 

constant at any location, for instance ring 

injection, again by augmenting the objective 

matrix A with highly weighted equations.  

 

 

Figure 4: Orbit Correction example from the SLAC B-

factory, showing an acquired beam orbit and calculated 

correction and predicted resulting orbit. 

 Multiknobs and Bump calculation 

The “multiknob” facility, for simultaneously changing 

the value of many devices, each by some designated 

coefficient, is heavily used at SLAC. The “Bump” 

application, which builds on multiknobs, can be used to 

calculate corrector coefficients whose effect will be to 

sweep the beam though some range of orbit offset (a 

“position” bump) or angle, using 3 or 4 correctors, while 

holding the orbit outside the bump constant.  

Correlation Plots 

One key contribution of software to the analysis and 

optimization of the SLAC accelerators, has been the 

Correlation Plots (CP) application. CP enables a user to 

conduct simple accelerator experiments online, through its 

ability to scan any “stepable” control system variable, and 

read back many other “sampled” variables on each step. 

The stepped and sampled variable values are recorded, 

and results can be plotted and fitted. Expressions in the 

variables themselves can evaluated in CP’s spreadsheet-

like GUI. Both 1D and 2D scans are supported. An 

important aspect of Correlation Plots, which probably 

gives rise to much of its popularity, is that the variables it 

understands how to step and measure need not be simply 

control system process variables, but rather richer 

scientific quantities computed by special purpose code 

elsewhere in the SCP. For instance, CP knows the 

procedure to step the energy of the B-factory, or drive a 

multiknob, and it can sample such things as the fit 

parameters of an orbit fit computed by the application 

described above, as well as many other similar “macro” 

variables.  

The above overview gives some flavor of the 

applications in the SLAC Control Program, which have 

been used to optimize the accelerators in the SLAC 

complex for 20 years. However, with the commissioning 

of the Linac Coherent Light Source (LCLS) accelerator, 

the three complexities of any such significant software 

reimplementation arose. Firstly, the rich and mature 

legacy applications, on VMS, should be usable with the 

process variables of new controls system, which was 

based on EPICS. Secondly, we wanted the legacy 

proprietary controls system, modeling and data processing 

of the legacy system to be available to unix based 

commissioning tools like Matab, and to the new scientific 

applications. Thirdy, the new scientific applications 

themselves to be rethought. The new applications and 

required infrastructure for this transition is where the 

remainder of this paper concentrates. 

DATA AND CONTROLS INTEGRATION 

To connect the legacy applications to the new EPICS 

based control system, we developed an “SLC control 

system aware IOC”. This is a control system message 

code bridge, which translates messages such as “trim this 

list of magnets” or “acquire beam position data for this 

list of beam monitors” in the protocol of SLC control 
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system, to Process Variable operations and sequences that 

can be acted on by EPICS Input/Output Controllers.   

To connect modern unix based Java or Matlab based 

applications to the legacy VMS control system, a CORBA 

based internetworking system called AIDA (Accelerator 

Independent Data Access [4]) was used. AIDA was first 

developed as a design study for the International Linear 

Collider (ILC). AIDA provides data location and 

semantics transparency to client applications. That is, a 

client asks for data (or to set it), and AIDA works out 

which control system, data storage or modeling system etc 

and host computer to ask for that data, and most 

importantly, makes the translation of how to ask.  

 

Figure 5: AIDA is implemented in CORBA. The graphs 

show AIDA’s Java CORBA (Orbacus) performance over 

a 100Mbit Ethernet for acquisition of a single Double 

value (top) and for a dynamically constructed structured 

data object of an array of 11 doubles and an array of 11 

strings (bottom), showing 900 roundtrip times. Note the 

Virtual Machine warmup evident at the beginning of the 

test of the structured object. In practice, AIDA’s median 

performance of 2ms for simple data, and less than 10ms 

for structured, has been easily fast enough for high level 

applications software. 

MATLAB APPLICATIONS 

Matlab has been used both for scripting ad hoc 

solutions during the commissioning of LCLS, and as an 

interactive GUI application platform. Since new aspects 

of the SLAC accelerator controls specifically developed 

for LCLS, were done in EPICS we use the labCa system 

to connect Matlab to EPICS Process Variables (PVs) [3]. 

To enable the body of our legacy control system and 

applications to be used from within Matlab for LCLS 

commissioning, we employed the Java API of the 

Accelerator Independent Data Access (AIDA) system 

described above, since Matlab allows java calls to be 

made directly from scripts with no wrapping. We shall 

also be using this feature of Matlab to script XAL.   

Given the infrastructure tools above, our experience of 

Matlab has been that it is an effective rapid development 

tool for applications that used the numerical analysis of 

Matlab significantly. Among these applications were a 

framework for prototyping and testing feedback 

algorithms, and GUI applications for beam profile image 

acquisition and analysis, beam bunch-length 

measurement, a Matlab based system for conducting 

simple correlation finding experiments through the 

control system, emittance measurement, and many other 

smaller applications.  

 

 

Figure 6: Screenshot of the Bunch Length Measurement 

application scipted in Matlab, using in Mathwork's 

GLIDE tool for constructing graphical user interfaces for 

Matlab programs. 

Use of Matlab as an online tool also proved very 

popular among scientists who were already familiar with 

Matlab for data analysis. When they were provided 

methods to interface to the control system and data 

acquisition from directly within Matlab’s scripting 

language, they could script applications and ad hoc 

analysis for themselves.  

In these contexts, it very successfully satisfied our 

commissioning schedule. However, Matlab GUIs are 

slow, particularly if used in some thin client remoting 

context like over X11, and since it’s oriented toward 

scripting it lacks programming constructs required for 

large, integrated, error-tolerant control system user 

interfaces. Additionally, some programmers who were 

accustomed to coding tools available in modern Integrated 

Development Environments (IDEs), like “refactoring” 

(where all instances of the use of a method or object, can 

be changed by the editor automatically) found the process 

of programming itself clumsy. In the light of these 

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA WOAB01

Operational Tools

291



drawbacks, we shall develop the production quality 

scientific applications necessary for LCLS operations (as 

opposed to commissioning), using a purpose built Java 

GUI framework, and use Matlab within that GUI 

framework for numerical and graphical tasks.  

SLAC ECLIPSE ACCELERATOR LAB 

Physics software applications for the Linac Coherent 

Light Source, and some other large experimental facilities 

of SLAC, will be developed in a new software 

framework. This platform for applications, is 

implemented as a Java Eclipse RCP (Rich Client 

Program) [6]. It system integrates code from a number of 

sources; XAL, a Java package for control and 

optimization of particle accelerators [7][8]; Java code 

emitted by the Matlab Builder for Java [9]; together with 

Aida and Java Channel Access data interfaces, and 

applications of the Control system Studio (CSS) [10].  

 
Figure 7: SEAL with the Online Model perspective.  The 

perspective contains a workspace navigator displaying the 

workspace file system (upper left), a beam line sequence 

selector (upper middle), an online model run control 

(upper right) and an orbit data plot panel for showing the 

model run result (bottom). 

CONCLUSIONS 

Historically at SLAC, scientific software developed for 

accelerator operations, have been very successful. This 

has been, in part, due to the great interoperation of the 

applications themselves, together with their very specific 

concentration on the physics problems of the machines on 

which they were used. These joint considerations are 

guiding us in new developments when using modern 

software tools and techniques. 

 

 

Figure 8: SEAL with the Data Browser perspective.  The 

perspective includes Data Browser Archives view (left), 

Data Browser Config view (bottom right) and a blank 

editor area (upper right). 
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