
A GUI BUILDER ENVIRONMENT BASED ON LABVIEW FOR THE
VIRGO PROJECT

F. Carbognani, B. Lopez, D. Sentenac, EGO, Pisa, Italy.

Abstract
In order to support the ongoing VIRGO Detector

commissioning activity and facilitate the transition to full
operational mode, the need for new, quickly built, flexible
and graphically rich Graphical User Interfaces (GUIs)
arose. The challenge was to set up a GUI building
environment able to deal with those requirements and to
smoothly integrate with the existing distributed control
software framework (C/C++ based) and associated
software management procedures. We have been able to
fulfil those requirements by using LabVIEW as our GUI
builder environment and by enhancing its functionalities
within a three-layer approach: an interface to our
distributed control system, a collection of common
functionalities and another of autonomous building
blocks.

INTRODUCTION
The VIRGO project consist of a suspended Michelson

Interferometer with two 3 Km arms aimed at the detection
of gravitational wave signals from cosmic sources [1].
During its commissioning phase, on GUIs side, high
flexibility and an efficient way to gather user
requirements were needed. In this sense, applying the
same development life-cycle used for control applications
revealed not to be appropriate and a new strategy that
relied on the LabVIEW Prototyping Methods [2], has
been introduced. This greatly helped in speeding up the
user requirements clarification. On the other hand, in
order to use LabVIEW GUIs together with the C/C++-
based control applications there was the need of setting up
a building environment compliant with the existing
software engineering conventions and practices.
Regarding the GUIs characteristics it was required them
to contain as less as possible “intelligence” like, e.g.,
protections or control logic that was clearly identified as
responsibility of the control processes. Other general
operational requirements like, e.g., a maximum of two
sub-levels to reach whatever functionality, had also to be
considered.

ARCHITECTURE
Three basic components have been found to be

necessary for the accomplishment of our requirements: a
LabVIEW interface to our control framework, a common
function library and a common building block library.
Figure 1 shows these components, which we respectively
called LVInterface, LVCommon and LVBlocks, and their
dependencies. Altogether, they provide the necessary
structure and implementation needed for building user
interfaces on top of them.

Figure 1: the three layer architecture

The Interface
The interface corresponds naturally to the lowest level

and contains the implementation that allows
communicating from LabVIEW applications to our
control framework. In particular what was needed was a
binding to the Virgo specific interprocess communication
layer (Cm) [3] similarly to what has been done for other
frameworks like EPICS [4] [5] or Tango [6]. For the latter
reference cases the interfacing is based on dynamically
loaded libraries (DLLs), however due to the specificities
of the Cm communication layer it has been considered
more appropriate to develop the interface by using a Code
Interface Node (CIN) [7]. This CIN permits the sending
of control commands to the distributed control system via
the Cm communication service, and handles several
command parameter data types such as integers, floats
and strings. In this context the main effort has been spent
in replicating the cm send command (able to build and
send a message to a Cm application) within the specific
CIN entry point routines:

• CINLoad/CINUnload: executed only once at
VI load and unload time

• CINInit/CINDispose: executed once at
load/unload time for each instance of the CIN
block

• CINRun: Executed at each block activation
time

The resulting binary code has then been incorporated in
two VIs implementing command sending and receiving
(CmSend, CmRecv) and one implementing the specific
link to the Data Acquisition (DAQ) stream (CmGetData).
Figure 2 is showing the block diagram corresponding to
the CmSend VI.

TPPB19 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Integration of Industrial Systems

202

Figure 2: CmSend VI block diagram

Common Function Library
This library uses the described bindings and

implements higher level common functionality like e.g.
standard control process commands, utilities, etc. It is
exclusively made up by LabVIEW VIs and does not
contain graphical components. In order to make a clear
distinction between common and custom VIs we used a
color and prefix convention for the VI icons and
filenames, respectively. In this context, we are currently
evaluating if we can benefit from the project library
approach introduced with LabVIEW 8. Our idea, even if
not yet implemented, is to have the common VIs available
on a custom function library for their immediate usage at
the LabVIEW development environment.

Building Block Library
More than enhanced graphical widgets, when referring

to building blocks we talk about completely autonomous,
configurable sub-GUIs that can be inserted into higher-
level GUIs as needed. Figure 3 shows an example GUI
made up of several instances of the same building block.

Figure 3: Suspension Towers UI, a GUI based on a single
building block instantiated nine times

The methodology used is to place sub-frame containers
in the GUI wherever a desired block should be located,
and then to load and configure the respective sub-VI
dynamically. The latter functionality is contained in a
load-block-VI that receives the specific configuration as
an input and hides the rest of the implementation to the

user. In the SuspensionUI example one basic block has
been created for a generic suspension tower and has then
been reused several times in the higher-level GUI. As
LabVIEW does not allow a straight-forward incorporation
of complete blocks (i.e. programming and graphics
together) those have to be loaded, configured and run
dynamically inside a sub-panel container. Figure 4 shows
the usage of a load sub-VI that receives whatever
configuration is needed as input and returns the respective
VI reference.

Figure 4: A load-block-VI use example

The described methodology unfortunately seems to find
only limited support in the LabVIEW development
environment. Consequently, a not negligible effort was
spent in order to set up a useful and efficient
implementation. However, the invested time has been
largely rewarded by the fact that GUI development
became fully modular, the code reuse could be maximized
and the block diagrams became clear and maintainable.
Even more, without this approach the development of the
complex and wide spanning GUIs VIRGO is requiring
would have quickly hit limitations regarding
maintainability and flexibility.

 SOURCE CONTROL AND PACKAGE
MANAGEMENT

Three software packages have been created in order to
contain the source code of the basic components:
LVInterface, LVCommon and LVBlocks. As our source
control system is based on packages more than files, and
being the version number part of the path, we had to find
a mechanism that allowed us to correctly align these basic
packages whenever a new version was produced. Our aim
was to integrate the build of those packages into our
Makefile-based approach; however, the limited LabVIEW
command line build options did not allow us to reach this
goal. In addition, reviews of the LV8 Application Builder
and the prior OpenG Builder have not been fruitful.
Finally, we decided to perform manual builds and provide
associated simple procedures.

TEMPLATES
As soon as the first high-level GUIs had been built by

using the new methodology we generalized their structure

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA TPPB19

Integration of Industrial Systems

203

and then prepared templates that already contained
implementations or structures for status updating,
commanding, synchronization, constant definitions and
sub-UI execution. This way also a common GUI look-
and-feel could be ensured from the beginning. As the
functional development had been reduced, we had more
time available for the graphical enhancement of the GUIs,
as can be seen at the example shown in Figure 5.

Figure 5: Mirror Steering UI, less time needed for the
functional part allowed to concentrate on the graphical
enhancement

CONCLUSION
The presented GUI building environment based on

LabVIEW required an initial effort of customisation by
establishing the right methodology and implementing the
basic components, but it is now allowing to build new

GUIs in a very short time with a high level of flexibility
and maintainability.

Even with the limitations found at the level of
LabVIEW command line build options and the not
straightforward usage of autonomous building blocks, we
are able to state that this LabVIEW based approach has
proven to be efficient and permit us to fulfil the increasing
amount of GUI-related user demands.

REFERENCES
[1] F. Carbognani et al., “Status of VIRGO”, these

proceedings.
[2] LabVIEW Development Guidelines.
[3] C.Arnault, P. Massartal “A multitask communication

package”, - LAL, Orsay, France.
[4] K.U. Kasimir. M. Pieck, L.R. Dalesio, “Integrating

LabVIEW into a Distributed Computing
Environment,” ICALEPCS 2001, San Jose, CA,
USA.

[5] D. Thompson and W. Blokland, “A Shared Memory
Interface between LabVIEW and EPICS,”
ICALEPCS 2003, Gyeongju, Korea.

[6] J-M Chaize, A. Götz, W-D. Klotz, J. Meyer, M.
Perez, E. Taurel and P. Verdier, The ESRF Tango
Control System Status, ICALEPCS 2001, San Jose,
CA, USA.

[7] LabView Documentation: Using External Code in
LabVIEW

.

TPPB19 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Integration of Industrial Systems

204

