
CHANNEL ACCESS CLIENTS ON THE MICROSOFT WINDOWS
PLATFORM

G. Cox, B.G. Martlew, A. Oates, STFC Daresbury Laboratory, U.K.

Abstract
The control system for the Energy Recovery Linac

Prototype (ERLP) under construction at Daresbury uses
the Experimental Physics and Industrial Control System
(EPICS) and vxWorks on VME64x [1]. The client
software in use during the commissioning of the
accelerator is based on PC consoles running Red Hat
Linux 9. Synoptic displays and engineering panels are
created using the Extensible Display Manager (EDM) and
other standard EPICS extension software is used for
archival, alarm handling etc.

The Synchrotron Radiation Source (SRS) control
system uses a bespoke control system with client software
on PC consoles running Microsoft Windows. We would
like to employ a similar approach for the operational
client software on ERLP with Channel Access (CA)
clients running on Microsoft Windows PC consoles.

However, the Microsoft Visual Studio development
tools and ActiveX/COM technologies used for creating
client side software on the SRS control system are now
outdated and have been superseded by the .NET
framework and associated developer tools. This paper
discusses the different options currently available for
developing CA clients on the Microsoft Windows
platform, along with progress in creating CA clients for
the .NET framework.

INTRODUCTION
CA clients for the commissioning of ERLP are

currently running on Linux consoles with the Red Hat 9
operating system. We have plans to migrate to the
Microsoft Windows platform for ERLP operational
applications. This will allow us to run the applications
and access data on the control system from office PC’s,
and remove the need for remote access via Exceed to
ERLP console machines. It will also maintain a standard
look and feel consistent with other Microsoft Windows
applications and the SRS control system with which
Daresbury engineers and physicists are familiar.

A number of different options currently exist for
building CA clients on the Microsoft Windows platform.
These include ActiveX CA, Simple CA (SCA) [2], Java
CA (JCA), CA Java (CAJ) [3], and calling native code in
CA via C++.

Each of these options has its own advantages and
disadvantages. ActiveX CA is simple to use, however
performance is limited and Process Variable (PV) support
is incomplete compared to records of an Input/Output
Controller (IOC). JCA performance is again limited due
to the implementation using Java Native Interface (JNI),
this is improved by the CAJ native Java implementation.
With Java’s rigid adherence to the notion of write once,

run anywhere it can be difficult to use to the maximum
the unique features and modes of working within an
individual desktop environment.

For best performance the calling of native code in the
CA dynamic-linked libraries (DLLs) can be used, but this
is a complex approach not ideally suited to building visual
applications.

Microsoft is promoting .NET as its flagship
development platform. As such it seems a logical way
forward for developing CA clients on the Microsoft
Windows platform. Currently there does not exist a full
CA implementation for the .NET platform.

THE MICROSOFT .NET FRAMEWORK
The Microsoft .NET Framework is a software

component that can be added to, or is included with, the
Microsoft Windows operating system. It provides a large
body of pre-coded solutions to common program
requirements, and manages the execution of programs
written specifically for the framework.

The pre-coded solutions that form the framework's
class library cover a large range of programming needs in
areas including: user interface, data access, database
connectivity, web application development, and network
communications. The functions of the class library are
used by programmers who combine them with their own
code to produce applications.

Programs written for the .NET Framework execute in a
software environment that manages the program's runtime
requirements. This runtime environment, which is also a
part of the .NET Framework, is known as the Common
Language Runtime (CLR). The CLR provides the
appearance of an application virtual machine, so that
programmers need not consider the capabilities of the
specific CPU that will execute the program. The CLR
also provides other important services such as security
mechanisms, memory management and exception
handling. The class library and the CLR together
compose the .NET Framework.

Managed code is code that has its execution managed
by the .NET Framework CLR. Unmanaged code
executes outside of the control of the CLR. Unmanaged
code may perform unsafe operations such as pointer
arithmetic and is used for accessing unmanaged memory,
calling Windows APIs, interfacing to COM components,
and coding performance-critical methods which avoid the
overhead of the CLR.

Platform Invocation Services
Platform Invocation Services, commonly referred to as

just P/Invoke, is a feature of Common Language
Infrastructure implementations, like Microsoft’s CLR,
that enables managed code to call native code in DLLs.

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA TPPA30

Software Technology

155

The native code is referenced via metadata that describes
functions exported from a native DLL.

We have used P/Invoke to create a comprehensive CA
implementation for the .NET platform. Using this
approach, unmanaged code in the CA DLLs can be called
from within managed code executing within the CLR.
This allows applications to be written in any of the Visual
Studio .NET supported languages including C# and
Visual Basic .NET.

This CA implementation allows both synchronous
access to PVs along with asynchronous access using
callback delegates. Data structures in CA have to be
carefully marshalled via P/Invoke paying particular
attention to character arrays which must be marshalled as
unmanaged types (see Code Sample 1).

[StructLayout(LayoutKind.Sequential, CharSet=CharSet.Ansi)]
public struct dbr_ctrl_string
{

public short status;
 public short severity;

[MarshalAs(UnmanagedType.ByValArray,
SizeConst=40)]

 public char[] value;
};

Code Sample 1: Example dbr_ctrl declaration.

Development Tools
Preliminary development was carried out in C# using

P/Invoke within Visual Studio 2003 (.NET 1.1), before
upgrading to Visual Studio 2005 (.NET 2.0).

To allow callbacks into managed code from the CA
DLLs to operate correctly in Visual Studio 2003, .NET
CA DLLs had to be built using Visual Studio 2005
(thanks to Chris Timossi, LBNL). When upgrading to
Visual Studio 2005, these callbacks no longer worked
correctly. Switching back to ‘standard’ non .NET built
CA DLLs seemed to improve matters, but non-trivial
callbacks would still not operate correctly. To solve this
problem an attribute (see Code Sample 2) has to added to
the callback delegate declaration.

[UnmanagedFunctionPointer(CallingConvention.Cdecl)]

Code Sample 2: Callback delegate attribute.

PROCESS VARIABLE CLASSES
Following an object oriented approach to implementing

the CA interface for .NET, several EPICS process
variable classes have been created. The first of these,
which acts as a base class, is a simple implementation of
PV functionality and attributes. This class exposes a
channel ID, connection state, precision, engineering units
and type. It also manages the connection and sets up a
callback for channel value changes. The CA i/o and event
polling is all handled internally allowing a developer to
create a connection to a PV and receive data simply by
creating an instance of the class and registering an event
handler.

Further sub-classes have been created which extend the
base PV class functionality to include data formatting (for

enumerated types etc), alarm handling and colour PV
implementation.

.NET CONTROL LIBRARY
The PV classes created to allow a consistent method of

access to EPICS PVs have been used to build a library of
controls for the .NET framework. These controls are
intended to give an EDM-like way of generating client
applications for the Windows platform. The control
library allows developers to generate CA client
applications within any Visual Studio .NET language
without the need for any code to be written. The control
library is in the early stages of development and currently
only contains a small number of EDM-like controls.

CA Label
The CA Label control is used to display a channel’s

value textually. It can be alarm sensitive and also
implements a colour PV and visibility PV. Data is
formatted according to the precision in the database, or a
user specified precision.

Figure 1 – Examples of the CA Label control.

CA Shape
The CA Shape control is used to display a channel’s

value visually. It implements a colour PV and visibility
PV. A number of shapes are available including
rectangles, diamonds, triangles and ellipses.

Figure 2 – Examples of the CA Shape control.

CA Byte
The CA Byte control is used to display a multi-bit

channel’s value either visually or textually. It can be
alarm sensitive and will display up to 16 bits of a multi-
bit channel.

Figure 3 – Examples of the CA Byte control.

CA Symbol
The CA Symbol control is used to represent a display

state. This state is selected based on the values of a
number of PVs. The display state can be based upon a
single PV or multiple PVs either with or without a binary
truth table. Each display state is represented by an image

TPPA30 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Software Technology

156

file. These may be bitmap, jpeg, vector graphics or
animated gif.

Figure 4 – Examples of the CA Symbol control.

CA TextBox
The CA TextBox control is used to control a channel’s

value textually. It can be alarm sensitive and has options
for focus updates and lose focus writes. Data is formatted
according to the precision in the database, or a user
specified precision. The control also supports auto-
completion which can be populated automatically for
enumerated type PVs.

Figure 5 – Example of the CA TextBox control.

Figure 6 – Example C# application built with the .NET
control library.

FUTURE DEVELOPMENT
Plans for future development of the .NET CA interface

include integration of knob control for incrementing and

decrementing channel values. We have two Universal
Serial Bus (USB) knob devices which could be
incorporated into the interface. One is a standard USB
commercial video editing device. The other a bespoke
controller currently used via a PCI bus on the SRS control
system. The PCI bus will be replaced with a USB
interface allowing simpler integration into the .NET CA
interface.

The .NET control library will also be extended to
introduce more EDM-like controls to allow displays for
ERLP operations to be quickly and easily generated for
the Microsoft Windows platform.

CONCLUSION
The decision to use Microsoft Windows as a possible

platform for operational application software for ERLP
introduced the need to have a reliable and efficient
interface into CA for the Microsoft Windows operating
system. After investigating and evaluating the existing
options the decision was taken to develop a .NET
interface for CA.

A number of problems were encountered during the
development of the interface, however these have now
been overcome and we now have a useable and reliable
.NET CA interface. The performance of the interface has
proven sufficient for all applications generated so far, and
with the PV class library and .NET control library we
now have a simple and efficient way to develop CA
applications for the Windows platform.

REFERENCES
[1] B. Martlew, G. Cox, S. Davis, A. Duggan, A. Oates,

A. Quigley, R. Rotheroe, “Status of the ERLP
Control System”, ICALEPCS’07, Knoxville, October
2007, TPPB38

[2] C. Timossi, H. Nishimura, J. McDonald, “Experience

with ActiveX control for simple channel access”,
PCaPAC’02, Frascati, October 2002, LBNL-51591

[3] M. Sekoranja, “Native Java Implementation of

Channel Access for EPICS”, ICALEPCS’05,
Geneva, October 2005, PO2.089-5

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA TPPA30

Software Technology

157

