
BEYOND ABEANS

Igor Kriznar, Jaka Bobnar, Cosylab, Ljubljana
Matthias R. Clausen, Philip Duval, Wu Hong Gong, DESY, Hamburg

Günther Fröhlich, GSI, Darmstadt

Abstract
Java Abeans libraries have been successfully started in

1999 as part of ANKA control system. The goal was to
provide a universal solution for building high level
control system applications in Java for any control
system. The arrival of Java 1.5 in 2005 was an excellent
opportunity to review Abeans and CosyBeans (GUI
components and widgets part of Abeans). Cosylab has put
experience and new features of Java 1.5 into new projects
which superseded what has been done so far by Cosylab.
The key element for success of the projects is the
collaboration between different laboratories. The
CosyBeans components have found their usefulness as a
base for development of ACOP GUI components for
TINE at DESY. Similarly Abeans' non-visual libraries
were replaced by DAL (Data Access Library) and CSS
(Control System Studio) projects developed in
collaboration with DESY. DAL was also successfully
used at GSI, Darmstadt, to model device layer on top of
middle-ware CORBA layer. New Java applications were
build with DAL and renewed CosyBeans components and
are already used in commissioning of new beamline at
GSI.

ABEANS
 Abeans version R3 is a library that provides simple

Java beans for connection with the control system when
building control applications. At the same time it provides
several useful services: logging, reporting, exception
handling, configuration and data resource loaders,
authentication and policy management.

Because Abeans are designed to run multiple
applications in a single JVM (Java Virtual Machine),
libraries are loaded only once and the memory footprint is
modest compared to applications running in separate
JVMs. This feature also allows the same applications to
be run individually or from within an applet in a web
browser.

In Abeans, different models are used to represent the
structure of the control system. Models use plugs to get
data from a specific control system. There are two
models: Abeans “device” model for controls systems like
ACS, where connection is made to device CORBA
objects; and Abeans “channel” model (i.e. a narrow
interface access model), which consists of simple Channel
classes, to create a plug connecting to a single process
variable or channels.

Meta information about the control system, such as its
namespace hierarchy and property types is stored in the
Abeans Distributed Directory which is an implementation
of the Sun’s JNDI (Java Naming and Directory Interface)

which provides standardized namespace browsing and
searching functionality for different architectures.

Abeans are being used in production environment on
several sites, sometimes from the beginning:

● ANKA (Germany)
● Diamond (UK)
● UVSOR (Japan)
● ASP (Australia)
● Spring-8/JASRI (Japan)

As long as this sites will be running Abeans support will
be provided. In case of necessity for features which are
not available in Abeans there is a scenario for easy
upgrade to latest CosyBeans and DAL libraries [1].

Abeans Strong Points
During years of development and improvement of

Abeans a lot of experience has been collected inside
several libraries, which include Abeans and CosyBeans
open source products. Bellow is a table which was made
in year 2002 by making a crude effort estimation in man-
years from number of code lines.

Table 1: Effort for development of Abeans and
CosyBeans libraries till year 2002.

Product Lines of Code Estimated Work
Common 7,343 1.58 my
Abeans 26,715 6.30 my
CosyBeans 44,931 10.54 my
Integration 4,214 0.91 my

Abeans are especially successful in this areas:
● Building application can be very effective with

professional looking GUI components. With
little effort Abeans and CosyBeans components
allow building an application which has
professional grade features and look & feel. All
components are available under open source
terms.

● Reuse of components, design patterns, and more:
 experiences and best practices gained by Cosy
lab. It was always policy of Abeans that it
should adopt any new design pattern or feature
which had proved successful in practice of
control programming. Not only code itself but
also enhanced programming practices are
important part of Abeans framework.

● Collaboration with and contributions from many
 sites: ANKA, ESO, SNS, DESY, RIKEN.
Abeans are unique in a way that they were made
in multi-institute collaboration, which was
distributed in time scale and effort goals. Each
lab has contributed its own view on challenges

-

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA TPPA24

Software Technology

141

that Abeans had to solve and of course own
solutions, which somehow had to fit into Abeans
concepts. Binding point was Abeans team with
their ideas and expertise.

Abeans Weaknesses
Two major weaknesses came obvious while working

with Abeans. This two weaknesses seems to be general to
any framework:

● Constraints: building has to be done in a certain
way to accomplish the task.

● Complexity: maintaining a complex framework
is expensive.

In order to use all strength of a framework a
programmer should solve certain problems in certain
ways. And this must be learned. Abeans framework can
solve very complex problems in an elegant and simple
way, like interfacing several control systems at same time.
But there is certain cost to this. One is that some simple
tasks need a little more effort, for instance you have to
extend certain classes to make a simple application.

When a programmer wants to use only certain features
in a way not foreseen by the framework, then framework
may appear limiting in ways in which it can be used.

Abeans were ahead of it's time for many Java features.
Logging and exception services for example became part
of official Java only after they have been developed
especially for Abeans. At some point Abeans need to be
upgraded to latest Java and possibly merge or replace
Abeans special services with the one available in standard
Java JDK.

BEYOND ABEANS
Development of Java technology moved forward to

version JDK 1.5 and latest 1.6 with important new
changes in Java language capabilities and performance
improvements. The Following considerations influenced
decision what to do with Abeans in the next step:

● Abeans works well and are stable in Java 1.4.
● A lot of features which were parts of Abeans

framework are now available in recent Java
technology. For example multi JVM instances
can share native resources so framework for
sharing JVM is not necessary any more in Java
1.5.

● To use new the Java capabilities most
efficiently (like generics and enums) Abeans
API should be rewritten.

● There are several libraries inside Abeans,
especially parts of CosyBeans, which were
interesting for use outside of any framework.

● Several application frameworks appeared in
recent time like Eclipse RCP (Rich Client
Platform), which have huge support from
industry and open source community.

Conclusion was that Abeans can safely stay at the
current development level, doing their nice job by solving
problems for which they were designed. It has always

been Abeans' policy to avoid re-inventing and to adopt
and use tools and libraries which are already available and
reliable. General plan is to further develop and follow or
advanced Java technology with those Abeans libraries,
which are still unique in the field.

Libraries and technologies, which can be used instead
or beside Abeans, with examples are described in the next
subsections.

CosyBeans
CosyBeans libraries are open source Java libraries for

data visualization [2]. They contain Java widgets
especially designed for displaying live data from a control
system. They were developed as a GUI part of Abeans.
From the beginning the basic widgets were designed as
standard Java Beans. They are organized in the following
packages:

● Java-Common
Contains non-visual utilities and common
classes.

● CosyBeans-Common
Contains GUI components and widgets as pure
Java Bean objects made in Swing. All widgets
are defined here as independent beans which can
be used in standard Java visual editors.

● CosyBeans
Contains widgets from CosyBeans-Common
package with addition of Displayer interface,
which makes widgets easier to connect with the
data providing libraries from control system.

● CosyBeans-DAL
Extension of Displayers from CosyBeans
package which connects them to DAL API.

CosyBeans components, beans and widgets are flexible
and easy to use. They can be used just like other Swing
components because they have a clean and documented
API and they conform to Java Beans specifications. They
work perfectly with other Java Beans or Java
development environment.

CosyBeans are integrated into ACOP beans at DESY
[] as base for several ACOP components.3

TPPA24 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Software Technology

142

ACOP Beans
ACOP beans are Java Beans which are developed for

connection with TINE control system [4]. They provide
customizers and browsers and other tools which help
programmer and users to make smooth and easy
connection of ACOP components to TINE. They are
building blocks for TINE Java control system applications
and panels. TINE Java applications are made with pure
Swing and Java with NetBeans or Eclipse. ACOP
components are available inside visual building tools
(NetBeans and Eclipse VE) from custom ACOP palette [5].

DAL and CSS
DAL (Data Access Library) design was based on

specifications and input from wide control system
community covering several sites and control systems.
DAL purpose is to allow access to the control data from
different control systems with one well defined and client
programming oriented API. DAL allows building generic
multi-control-system applications or provide Java
wrapper for middle-ware communication libraries, like
CORBA.

DAL is a part of CSS (Control System Studio) project
[] which is developed at DESY. CSS is an application
suite build around RCP (Rich Client Platform), an
application framework from Eclipse. The CSS suite
already contains some interesting applications, like PV
Probe, strip chart, EPICS archive viewer and synoptic
display/editor.

DAL is completely non-visual and is written entirely in
Java. Even that it is a part of the CSS it can be used also
independently. Experiences and knowledge from the
Abeans about multi-control-system interfacing were used
in DAL. It allows fast and easy control system
integration. Only a couple of days is needed to provide a
basic access trough the DAL to any control system. The
following control systems have been covered by DAL to
various degree: EPICS, TINE, GSI IFC CORBA.

GSI IFC for HITRAP
CosyBeans in combination with DAL were used for

building Java table applications and various panels for
GSI HITRAP experiment. GSI have its own CORBA
based control system, which was wrapped in DAL device
interfaces.

CONCLUSION
We decided to keep Abeans as well designed

framework at current state of development and focus on
CosyBeans and other libraries coming from Abeans and
update them up to latest state of Java technology
development. One of the goals is also to maintain them in
a less framework style. CosyBeans are now successful in
a very flexible arrangement in various project as a set of
loosely coupled libraries and beans. They can be used
independently as single components or together in
collaboration with other CosyBeans or general Java
Beans.

CosyBeans continue to be open source libraries and are
a common code base for many projects at different sites.
They are still central point of distributed inter-laboratory
collaboration.

REFERENCES
[1] Abeans project page (http://abeans.cosylab.com/)
[2] CosyBeans project page

(http://cosybeans.cosylab.com)
[3]

TINE project page (http://adweb.desy.de/mst/tine/)[4]
ACOP

project

page

(http://adweb

.
desy

.
de/mst/acop/)

[6] CSS project page (http://css.desy.de)

[5] P. Duval et al., “New Abeans for TINE Java Control
Applications,” ICALEPCS 2001, Stanford, Ca;

Figure 2: Magnet table application for HITRAP
experiment at GSI written in Java with Swing, CosyBeans
and DAL.

6

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA TPPA24

Software Technology

143

