
THE ACOP FAMILY OF BEANS: A FRAMEWORK INDEPENDENT
APPROACH

J. Bobnar, I. Kriznar, Cosylab, Slovenia
P. K. Bartkiewicz, P. Duval, Honggong Wu, DESY, Hamburg

Abstract
The current ACOP (Advanced Component Oriented

Programming)* controls set has now been expanded to
include a wide variety of graphical java beans, which
simultaneously act as displayers of control system data.
Besides the original ACOP Chart, the set of ACOP beans
also includes a Label, Slider, Table, Gauge, Wheel, and
image control, along with an invisible Transport bean,
which is itself embedded in the ACOP GUI beans. The
new ACOP beans all offer design-time browsing of the
control system to expedite data end-point selection.
Optionally a developer can choose to connect and render
the incoming data automatically, obviating the need for
writing code. The developer can either forgo this option
or choose to override the generated code with his own,
allowing for rich client development. At the same time a
user can browse and add or change the control system
endpoints at run-time. If the application is using the
Component Object Manager (COMA)** then all visual
aspects of the application can be edited at run-time,
allowing for simple client development. This scenario is
independent of a framework, and the developer is free to
choose the IDE of choice.

INTRODUCTION
Console applications for PETRA III will make

extensive use of Java as a development tool. In order to
satisfy the demands both for writing rich-client control
applications and configurable simple clients (without
coding) we have extended the capabilities of the current
ACOP chart bean, and are now providing ACOP
functionality to a wider set of displayer beans. The new
ACOP family of beans consists of a transport bean, which
is responsible for data acquisition, and in our case uses
primarily the transport plug for the TINE [3] protocol, and
also consists of several graphic beans for displaying data.
The transport bean provides device specific and graphic
independent meta data, which can be browsed by the
ACOP graphic beans, provided they reference the
transport bean. The ACOP graphic beans themselves
support popup menus (customizers) for displaying device
specific transport meta-data as well as displayer-specific
display properties. Drag-and-drop (DnD) is supported for
passing transport and displayer meta-properties at both
design time and run time. Any changes in transport or
display settings introduced at run-time can then be saved
and reapplied (if desired) upon the next start of an ACOP

application. The current ACOP transport bean offers plugs
only for the TINE protocol or for transport simulation.

ACOP TRANSPORT BEAN
The ACOP transport API is primarily a “narrow”
interface dealing with data “links” as opposed to
properties with “getters” and “setters”. This proves to be a
more general interface when dealing with a client API
such as TINE, which allows method calls. Data Links can
either be synchronous or asynchronous as discussed
already in [2]. The transport API allows a three-tier
hierarchy for specifying a device location, namely
“Context”, “Group”, and “Name”, and a “Property” for
accessing a device property or method. These entries
generally specify the target endpoint of the displayer.
The ACOP transport customizer will access the control
system’s naming services to allow the user to browse his
way to a desired endpoint. In addition, once an endpoint
has been selected, information as to a device’s property-
specify data is also provided. This information includes
the appropriate data format, size, array type, access,
engineering units and so on. A set of APIs are defined for
retrieving this generic data for use in the ACOP graphic
beans. The ACOP transport customizer allows setting of
all such transport parameters.

ACOP GRAPHICAL BEANS
The ACOP family of graphical displayers consists of a

two dimensional chart, table, label, slider, gauger,
wheelswitch and image container. They are extended
from their counter parts in the Swing graphical widget set.
AcopChart and Table are used as multiple displayers,
which mean that they can present values of multiple
device properties at the same time, while all the other
widgets can show only a single value. An invisible middle
layer is used for communication between displayer and
ACOP transport and by setting connection endpoints
directly on the displayer, it is automatically connected to
a desired device property.

Property Customizer
 Each ACOP graphic bean has its own individual

property customizer pertaining to its particular rendition
features. The customizer can be accessed both at design-
time and at run-time for setting display properties and the
device connection properties.

The property customizer is extremely useful for
browsing the available control system endpoints as well
as the available display properties. If the application
developer is writing a rich client, he has full control over

* http://acop.desy.de
** "The Run-Time Customization of Java Rich Clients with the COMA
Class," P. Bartkiewicz, et al., these proceedings

TPPA23 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Software Technology

138

all ACOP events and any data manipulation or filtering
which should be done prior to display. If the application
developer is writing a simple client, the customizer can be
configured to attach the assigned connection endpoints
directly to the displayer without writing a single line of
code.

Meta-Data Popup

ACOP graphic beans all respond automatically to a
‘Mouse Down’ event over the display area to provide a
popup display showing any and all attached control
system endpoints, as well as any relevant meta-data, such
as property characteristics and bean properties.

Drag and Drop
 All ACOP display beans support Drag-and-Drop

(DnD) in the following way. A ‘Start-Drag’ event will
collect and serialize all pertinent data transport
information connected to the displayer along with the
relevant display information. For instance an ACOP chart
be displaying the time histories (trends) of both the beam
current and lifetime. A ‘Start-Drag’ event will contain all
the endpoint information (device context, group, name,
property, etc.) for both the beam current and beam

lifetime. In addition it will contain the display settings
such as the display colors, max and min settings, etc. used
in the chart. Another application receiving this
information in a Drop event can make use of it in a
context sensitive way. For instance, dropping into
Notepad will just yield a text representation of the
serialized data. Dropping into a History Viewer might
collect the endpoint information and obtain the long-term
histories of both the dropped endpoints and append them
to the current history display. Drop into another ACOP
chart will reflect in the second chart having the same
settings as the drag source. Dragging between two
different ACOP displayers can of course lead to a loss of
display information. For instance, a chart is a more
complex object than a label. Hence dragging from an
ACOP chart to an ACOP label will preserve only the
control system endpoints and the display settings that
label can make use of. The above case of an ACOP bean
connected to the beam current and beam lifetime will pass
both endpoints to the ACOP label, however, as the label is
a single displayer as opposed to the chart, which is a
multiple displayer, the user will have an option to choose
the endpoint which should be connected to the ACOP
label. The color, line style etc. are of no use to the label,
and it will therefore jettison them.

 In addition, if for instance a multi-channel array is
being displayed in an ACOP table, the array index at
which the Drag event is initiated is also passed. An
ACOP label or History Viewer application receiving the
ensuing Drop event will then target the individual channel
being dropped.

ACOP SPIDER BEAN
The AcopSpider is a visual debugging tool and can be

used as a part of any application. It is a graphical
component, which informs user of any problems that
occur within the application (eg. exception reporting).
When put in a Container, the component automatically
registers itself as a TINE link listener and presents the
status of all currently active links. In the case of an error
user is notified via the change of look of the bean. If the
error is related to the link that is currently being attached
to some displayer, then the AcopSpider can also provide
overlay decorations on that particular displayer, which are
instantly detected by the user.

VISUAL EDITORS
All ACOP beans follow the Java Beans conventions.

These conventions are not part of the Java Beans API, but
in many ways they are more important than the API itself.
These conventions are sometimes referred as design
patterns and they specify such things as names and
signatures for property accessor methods defined by the
bean.

The reason for these design patterns is interoperability
between beans and the beanbox programs that manipulate

Figure 1: ACOP graphical beans.

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA TPPA23

Software Technology

139

them. One sort of these programs are the visual editors or
GUI builders. Such builders make use of the conventions
to enable user to create and modify components and
graphically design the application. Using the builder
supplied property sheets or the aforementioned
customizers one can set any property of such bean. The
customization of the bean is immediately reflected in the
generated code, which makes the ACOP framework very
useful when creating simple clients. One does not need to
know much more than only basic Java commands and is
already able to create simple control system applications.
The majority of the ACOP beans properties can be later
changed at run-time using the same customizers which
were used in design-time.

For even more efficient GUI building the ACOP library
has been extended to include an additional Eclipse Visual
Editor plug-in – a palette, which enables easy browsing
of ACOP beans. The ACOP library also includes
configurations, which enables the same browsing feature
in other GUI builders such as NetBeans.

Using COMA
Component Object Manager (COMA) defines another

project type where the java beans conventions will be
used. COMA is itself a lightweight application
framework, which enables the user to create or modify
applications in run time. The simplest COMA application
is an empty JFrame. During run-time, one can browse a
vast set of Java beans provided in the classpath of the
COMA and add them to the frame as desired. Besides
creating a brand new application, modification of an
existing application is also allowed by this framework.
Because the ACOP beans follow the Java beans
convention, it is therefore very easy to create a simple
application without using heavyweight GUI builders or
even opening an IDE for that matter. All modifications
made to a COMA application can be stored into an .xml
configuration file, which can then be loaded later, thus

preserving all modifications. Thus COMA plus ACOP
beans provide a lightweight alternative to heavyweight
frameworks.

ACOP-BASED APPLICATIONS
ACOP beans have been successfully used in number of

simple as well as more complicated applications. Besides
the numerous control panels which will be used by
control system operators, much more demanding
applications, based on ACOP library have been created,
such as the TINE Archive Viewer and Multi-Channel
Analyzer for example. These applications usually employ
certain wrappers around the beans in order to provide the
required functionality, however the library still represents
the backbone of all current and future applications giving
all of them the same look and feel.

CONCLUSION
Writing simple clients for a control system is not a very

demanding task, however it can be very time consuming
due to the large number of applications that are required.
In this case ACOP library can help tremendously because
with its help such applications can be created by just a
few mouse clicks. Furthermore, (at least for the variety of
control applications which do not require ‘business’ or
display logic) one does not need to use an experienced
programmer (potentially costing even more of his time
explaining the application requirements). Instead the
engineer, physicist or operator can easily create client
applications by himself, just as he desires.

REFERENCES
[1] I. Deloose, P. Duval, H. Wu, “The Use of ACOP

Tools in Writing Control System Software”,
Proceeding ICALEPCS’97, 1997.

[2] Philip Duval, Honggong Wu, “Acop as a Java Bean”,
Proceedings PCaPAC 2002, 2002.

[3] http://tine.desy.de

Figure 3: Archive Viewer showing DORIS overview in an
 ACOP Chart.Figure 2: Using ACOP beans in Eclipse's GUI builder.

TPPA23 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Software Technology

140

