
THE RUN-TIME CUSTOMIZATION OF JAVA RICH CLIENTS WITH THE
COMA CLASS

R. Bacher, P.K. Bartkiewicz, P. Duval
DESY, Hamburg, Germany.

Abstract
Java rich client applications can now make use of a

COMA (Container Object MAnager) class, increasing the
flexibility of their Graphical User Interfaces and
extending data presentation capabilities. COMA, when
used in application, makes size and position of all GUI
components configurable during application run-time.
Furthermore, new graphical components such as ACOP
[1] controls can be added by a drag-and-drop mechanism
to the existing user interface, providing additional access
to control system resources. Configuration changes to
component properties, including those of any added
components, can be saved to an XML file, which can be
reloaded at the next application start. This allows the
possibility of having user-defined extensions for existing,
compiled, client applications. This paper describes the
implementation of the COMA class and presents its
benefits when used in connection with the ACOP beans.

INTRODUCTION: REACH VS. THIN
CLIENT MODEL

In the client-server systems, client applications
usually fall into one of two client programming
paradigms, namely rich-clients or thin or simple-clients.
The criterion used to categorize a client application as
belonging to one of these paradigms is essentially the
presence of the data or display processing logic in the
client code.

We briefly describe here these models, weighing the
advantages and disadvantages of both approaches.

Rich Clients
Rich client applications contain hard-coded logic,

which processes data or display choices locally. In other
words, data obtained from one or more servers is not
simply attached to displayer widgets, but is filtered,
tested, or compared against display criteria or user input
prior to rendition. This ‘business logic’ generally provides
a much greater flexibility and convenience in data
manipulation, as it can be designed around specific
application requirements. The functionality of the client
application does not need to merely reflect a server’s
properties. Hence, a rich client creates a more
sophisticated view of and offers a more sophisticated
interaction with the data. Reaching the same level of
sophistication by configuring simple displayer widgets is
nearly impossible, as one is forgoing all of the advantages
of a rich programming language such as java and an
Integrated Developing Environment (IDE) such as Eclipse
or NetBeans.

The significant disadvantage of the rich-client
approach is that any modifications to an existing rich-
client application are not easily configurable and
consequently require the attention of an application
developer familiar with the programming language and
the application code. Simply adding or removing a
component to or from the graphical user interface will
likely violate the internal logic of the application and will
likely require program recoding.

Thus writing rich client applications requires real
programming skills and therefore ordinary end-users such
as operators in a control room will need to contact
professional programmers in order to customize client
application to their needs.

Thin Clients
In contrast to the rich client, the thin or simple client

does not contain any data processing or display logic. All
incoming data is displayed using dedicated, data specific
components (displayers). Likewise, user requests and
commands are sent directly to the servers without any pre-
processing or filtering. The graphical displayers used to
either render incoming data or submit outgoing data and
commands typically provide a data-transfer mechanism to
access the control system endpoints. The thin client, then,
reflects a set (or sub-set) of properties offered by the
control system servers.

The absence of internal business logic means that all
graphical displayers and components are uncoupled to one
another. On the other hand, this feature enables the
dynamic configuration of an entire application, for
example by reading configuration file at an application
startup. The configuration file will likely contain a list of
attributes defining the data connections and data transfer
parameters as well as graphical aspects of the components
(such as geometry, location, color attributes etc.). In this
scenario a thin client application might consist of two
principal elements. The first is a generic container
application, i.e. ‘an empty window’, which is capable of
reading a configuration file and rendering its contents.
That is, the generic container will know how to create and
display the necessary graphical components and connect
them to the appropriate data channels. The second element
is the configuration file itself, which is specific to the
application task at hand. This defines the application
functionality and appearance. Creating a thin client
application now means creating the configuration file.
This task can in turn be accomplished by inexperienced
application end-users (those not familiar with
programming techniques). Typically, simple client
development is supported by a specialized graphical
editor, providing a palette of components and displayers,

TPPA19 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Software Technology

126

which can be dragged, dropped and resized onto a form
representing the final application. Additional component
parameters such as data sources, data transfer protocols or
graphical aspects of the displayers etc. can be defined in
an associated property window.

‘HYBRID’ CLIENT MODEL

Both of the client paradigms presented above have

their advantages. We now present a third paradigm, which
in effect constitutes a ‘hybrid’ model. Our hybrid model
client application is then divided into two parts: one,
corresponding to the ‘rich-client part’, contains data
processing and display logic and the code which binds
data to graphical components. This part is created by the
software developer by using the Java programming
language. The second is a ‘thin-client part’ created by the
end user during the run-time of the application, by adding
specialized graphical components to the program’s user
interface and/or performing simple component
configuration, (without programming). Such a model
preserves the flexibility in client data and display
manipulation, using dedicated embedded logic, and offers
at the same time the possibility of adding new features
during the application run. This approach can be very
useful for users operating on test stands, beam lines, and
control rooms during machine studies, where the rapid
extension of console program functionality is most
desirable.

THE COMA CLASS: IMPLEMENTATION

OF THE HYBRID CLIENT MODEL

The COMA (Container Object Manager) class is an

implementation of the hybrid client model presented
above. COMA, when instantiated by a Java rich client,
turns one application window into thin client framework,
preserving at the same time the entire application’s
business logic as well as all graphical elements belonging
logically to the rich client application part.

The current version of COMA works with windows
derived from the JFrame class. In order to make use of
COMA one has to add a single line of code to his Java
rich client application. This essentially creates a COMA
object and passes a reference to the window frame:

new Coma(myJFrame);
When the application starts COMA is ‘inactive’ and

the behavior of the application remains unchanged.
COMA becomes activated when the user presses a Ctrl
key and simultaneously makes a right mouse button click
on the application window. The active state of the COMA
object is indicated by the window caption text (‘[edit
mode]’) and a finger shaped mouse cursor. Now all
graphical components contained by the window can be
resized and moved to other positions. Resizing or setting
a new position is very intuitive for even inexperienced
users: a mouse click on a component evokes a resizing
frame, as in most popular graphical editors. (fig 1).

Figure 1: Application window with Coma activated

Figure 2: Adding an AcopBean component to re-arranged
application window

 The new graphical components can be also added to
the window, by a simple drag-and-drop operation, or by
invoking a pop-up menu. During a drag-and-drop action
COMA accepts a string, representing a class name of the
component to be instantiated. Having a full class name of
a component COMA is able to create any component as
long as the related jar-file is accessible and as long as the
component follows the Java Beans specifications. Of
course it makes sense to drop only those specialized
components which offer the possibility of run-time
customization of their parameters, such as control system
connection parameters. The COMA edit-mode pop-up
menu (fig. 2) currently offers only the AcopBean
components, which provide run-time mechanisms for
connecting to the TINE [2] control system. The geometry
of newly added components can of course also be

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA TPPA19

Software Technology

127

modified. Only those components added to the
application during the run-time (i.e. not belonging to the
‘rich part’ of the application), can be removed (by
selecting a component and pressing the Delete key).

The result of the run-time customization (fig.3) can
be preserved for a later use. All changes made to the
application using the COMA during the run-time can be
saved to an XML configuration file. The configuration
file contains information about any new graphical
properties of the application window as well as all other
properties, including the connections to control system
parameters changed during the application run. During
the ensuing application run a user can activate COMA
and re-load one of the previously saved configurations.
This feature of COMA makes it possible to have several
extensions for a particular rich client application,
reflecting specific usage contexts or users preferences.

Figure 3: Result of the run-time customization of the rich
client application

COMA AS THE GENERIC THIN CLIENT
APPLICATION

By adding the COMA class to an application which

contains nothing but an empty JFrame, one can have a
generic thin client application which can be used with
various XML configuration files. In such cases the
configuration file describes the entire client application.

In addition, this ‘empty frame’ application can also
play the role of a simple graphical tool for generating
those configuration files.

The COMA jar file itself contains an empty, generic
thin client application. Since COMA offers a pop-up
menu providing users with the choice of all available
AcopBeans, building thin client applications for the TINE
control system has become a very simple task. One begins
by running the generic client frame, for example by
executing in the command line window:

 java –jar <path>coma.jar
The next step is to activate COMA, by pressing the Ctrl-
key while clicking the right mouse button on the window
surface. From the pop-up menu one can choose among a
variety of AcopBeans, resize them, and move them to the
desired locations. When all components are in position,
one exits the COMA editing mode, again by pressing the
Ctrl-key and issuing a right-mouse-click. Now using the
property customizer window supplied by each member of
AcopBeans family one can connect the controls to the
TINE servers and also define some graphical aspects of
controls, like colors, fonts, description texts etc. The thin
client application is now ready without writing a single
line of code or using any external editors or frameworks.
If the application is to be reused, one should re-activate
the COMA and choose from the pop-up menu the Save or
Save-As option.

CONCLUSIONS AND CLOSING
REMARKS

As presented in this paper, COMA provides a

powerful yet simple and intuitive way for extending rich
client applications to incorporate simple client techniques.
The minimal effort of adding the COMA class to a project
brings a lot of flexibility in configuring and extending the
functionality of a rich-client application. At the same
time, COMA allows raw simple client development at
run-time. The generic, thin client application framework
contained by the COMA jar file seems to be, in case of
simple client applications, an alternative for complex thin
client generating or configuring tools.

COMA plus AcopBeans provide a light-weight,
framework-independent way of the rapid application
development of both rich-clients and simple-clients.

Although COMA was designed to be used in the
TINE control system environment, it can be easily
adopted for other control systems.

REFERENCES
[1] “The ACOP family of beans : the framework

independent approach” J.Bobnar at al, these
proceedings

[2] http://tine.desy.de

TPPA19 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Software Technology

128

