Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

TPPA12

USER AUTHENTICATION FOR ROLE-BASED ACCESS CONTROL

Andrey D. Petrov, Suzanne Gysin, and Carl Schumann,
Fermi National Accelerator Laboratory, Batavia, IL 60510, U.S.A.

Abstract

The user authentication system is a part of the Role-
Based Access Control (RBAC) project for the high-level
LHC Control Software (LSA) at CERN. The project is
being developed by LAFS (“LHC at Fermilab Software”)
collaboration between control groups at CERN and
Fermilab. The function of RBAC authentication is to
create, distribute, and manage digital credentials for the
users. We had to consider many constraints dictated by
the existing control system, and diversity of the used
software. This paper describes the general design and
implementation of the authentication system in Java and
C++. We also give and overview of its additional features,
such as Single Sign-On and Role Picker.

PURPOSE OF THE PROJECT

As described in Role-Based Access Control
overview [1], we separate two principal concepts in the
design of RBAC: authentication (Al) and authorization
(A2). Both parts are implemented independently, as two
different systems, which do not interact in any way other
then passing the users' credentials from Al to A2.

As appears from its name, the purpose of the RBAC
authentication system is to verify the digital identity of a
principal (which is either a human user or a program).
This can be accomplished in several ways, described
below. In any case, if the authentication succeeds its result
is a digitally signed authentication token that is returned
to the application. The program can use the token
whenever it needs to interact with various parts to the
control system. For example, the token can be provided as
one of the arguments in an RMI call to set a device.
Front-ends and the middleware that are receiving such
calls will verify the token, thus confirming the identity of
the remote party, and can use it as a base for
authorization.

The RBAC authentication token is a short-term uniform
substitute of the real credentials. It gets issued by a central
service that can reliably verify the user's identity. Various
recipients of the tokens can validate them quickly and
easily, and use for making authorization decisions.

Because the RBAC project began when all other parts
of LHC Control Software have been already completed,
its design was the subject to a number of requirements
and limitations dictated by the infrastructure in place.
Basically, we couldn't change much about how the system
operated, so RBAC was built as an additional part on top
of the existing components.

The RBAC authentication system was not designed to
be absolutely secure, or to sustain any possible kind of
attacks. It's supposed to be used in a certain environment,
were other means of protection, such as network firewalls
and monitors, as well as the physical access control, are in
place. Based on the analysis of real threats, RBAC was
built to protect mainly against human errors, rather than
against deliberate efforts to break the system down. The
overall design of the authentication system was the result
of a trade-off between performance, security, and
complexity.

TECHNICAL DESIGN

The general layout of the RBAC authentication system
is shown on Fig. 1. It's built on a common client/server
model.

The Al server receives authentication requests via
HTTP from multiple clients, returning back either an
authentication token, or an error code. Each request from
a user contains its credential in some form. All requests
are atomic, so no session information is cached by the
server. The SSL/TLS protocol is generally used over
HTTP to protect the communication between the two
parties, and to authenticate the client's X.509 certificate, if
such is provided.

The client side is organized as a library, which can be
used by other applications or application frameworks.
This library provides a function that should be called in
order to obtain the authentication token from the server. It
also provides several standard GUI components, such as a
login dialog, role picker dialog, and others. Basically, that
authentication client-side library can be used in most
application without changes. Yet, its behavior can be
customized depending on a particular use case. For
example, for a headless program the user name and

NICE Control System
Password | =
Verifi \ i LSA Application- |
erirer RBAC Credentials RBAC | Application e
Al Server » . .
- Token | Client | oo >
Database public key o g

Fig 1: General Layout of RBAC Authentication System

Software Technology

111

TPPA12

password can be obtained by a way other then popping up
a graphical dialog.

There are also two back-end services required by Al
server. One is used to verify site-wide user names and
passwords. Another one is an Oracle database. Both of
them are parts of the central IT infrastructure at CERN,
and do not belong solely to RBAC. These services are
contacted only by Al server, and never directly from the
clients.

TYPES OF AUTHENTICATION

RBAC supports four types of authentication:
¢ By the user name and password.

¢ By a X.509 certificate.

¢ By the network address.

¢ By using an existing authentication token.

Password Authentication

The user names and passwords are checked against the
central NICE [2] account database, via a dedicated web
service. No user account information is stored in the
RBAC own database.

Certificate Authentication

If the user's X.509 certificate is available, it can be
applied in the standard client authentication mechanism of
TLS/SSL protocol. Then, the certificate information is
used to look up the user name in the RBAC database.

Address Authentication

Certain clients can be authenticated by their IP
addresses, using a lookup table in the RBAC database.
Normally, the address authentication is permitted only for
a very limited number of machines, such as control room
consoles.

Authentication with Existing Token

Any existing token can be used to request a new one,
providing that the original token is not expired, bears
valid signature, and was issued to the same location
address. The validity time of the new token will not
exceed the validity time of the original one.

This function of “re-authentication” is utilized for
several purposes, such as Single-Sign On and Role Picker,
described below.

AUTHENTICATION TOKEN

The authentication token is a chunk of data that proves
the digital identity of its possessor for a limited period of
time. It is created on Al server and gets digitally signed
with the server's private key.

Once the token is created, the server sends it back to the
client, which, in its turn, sends it to other parties when it
needs to identify itself. The client program can reuse a
single token many times, unless it expires. The RBAC
design document [3] standardizes the binary format of the
token, so that it can be implemented in many
programming languages and on various platforms.
Although the token incarnates to different kinds of objects
(or structures) in different programming languages, it is

Software Technology
112

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

guaranteed that multiple serialization and de-serialization
do not change its binary form and do not break the
signature.

Each token holds three groups of the data fields: (1)
authentication data, (2) auxiliary data, and (3) a digital
signature.

The first group, the authentication data, is intended for
regular recipients, using the tokens for authorization. It
includes the following fields:

¢ Serial Number (a random integer)

¢ Authentication Time

¢ Expiration Time

¢ Application Descriptor

¢ Application Timeout

¢ Location Address

¢ User Name

¢ List of Roles
The second group, an auxiliary data, is used solely by the
authentication system itself, and should be disregarded
during authorization. It may include a variety of fields,
such as a full list of roles for the user, a type of the token,
etc.

The third group contains a digital signature calculated
over the first two groups. None of the data in the token is
encrypted.

VERIFICATION OF THE TOKEN

Before the token is accepted by the authorization part, it
must be validated. The client applications may also want
to validate tokens occasionally.

The token is considered valid if its digital signature can
be verified using the server's public key, and its expiration
time is greater then the current time. Because the
validation procedure is so simple, it can be conducted
very quickly inside the middleware and front-ends,
without contacting the server. Furthermore, RBAC does
not offer any central validation services (such as
revocation lists).

DIGITAL KEYS

The RBAC authentication system requires only one
principal keypair (a matching combination of private and
public keys for asymmetric cryptography). This set of
keys identifies the authentication server before all the
clients. The private key is known only to Al server,
where it's deployed appropriately. The public key is made
available for all applications and front-ends. Normally, it
gets distributed along with the RBAC client-side code
(for Java applications, inside the program's .jar file).

The keys are employed for two purposes. Firstly, the
server uses its private key to sign all outgoing tokens, so
that the recipients can verify their authenticity. Secondly,
the server's private key is used to identify it before the
clients via SSL/TLS protocol. As the matching public key
is known to everyone, the clients can check whether the
server is trusted before sending passwords to it.

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

ADDITIONAL FEATURES

Besides the obvious form of authentication, when the
token is generated in reply to explicitly provided
credentials (such as user name and password), RBAC
supports two additional functions, based on re-
authentication of an existing token.

Single Sign-On (SSO) allows the user to log-in only
once, and then reuse the credentials in several
applications running on the same machine. As every
token is application-specific, it can't be reused by multiple
programs directly. Instead, when SSO is activated, the
RBAC client creates a “master” token that doesn't belong
to any particular application and is not good for a normal
use. Yet, every application can read it from a cache and
use it to request its own token.

The Role Picker can be used to reduce the number of
roles the current user possess. For example, when
performing some operation, a system administrator may
want to get rid of some privileges. Instead of editing his
profile in the user database, one can activate the Role
Picker dialog and de-select the roles that are not desirable.

Software Technology

TPPA12

CURRENT STATUS

Currently, the RBAC authentication system is released
in a production version.

The Al server is implemented as a set of servlets
running on Jetty 6. To improve performance and
reliability, several instances of the server are running. The
clients connect to them in a random order.

The clients-side library is implemented in Java and in
C++. Not fully supported feature at this time is X.509
authentication.

REFERENCES

[1] S. Gysin, A. D. Petrov, et al., “Role-Based Access
Control for the Accelerator Control System at
CERN”—TPPA04, ICALEPCS'07, Knoxville,
October 2007,
http://neutrons.ornl.gov/conf/icalepcs07/

[2] NICE Services,
https://websvc06.cern.ch/winservices/

[3] S. Gysin, K. Kostro, et al., “Role Based Access for
the Accelerator Control System in the LHC ERA”—
Requirements,

LHC Project Document No. LHC-C-ES-0007.

113

