TPPA10

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

DEVELOPMENT OF PHOTON BEAMLINE AND MOTION CONTROL
SOFTWARE AT DIAMOND LIGHT SOURCE

N.P. Rees, P.N. Denison, T.M. Cobb
Diamond Light Source, Chilton, Didcot, Oxon, UK

Abstract

Diamond Light Source has opened its first eight photon
beamlines to the user community this year. We have
developed the control software for the beamlines in
parallel, adopting a common set of standards, tools, and
designs across all beamlines. At the core of the control
system is the EPICS toolset and the widespread use of
the Delta Tau PMAC motion controller. The latter is a
complex, but flexible controller that has met our needs
both for simple and complex systems. We describe how
we have developed the standard EPICS software for this
controller so that we can use the existing EPICS interfaces,
but also enables us to use the more advanced features of the
controller.

INTRODUCTION

Since the last ICALEPCS conference [1], Diamond
Light Source [2] has commissioned its first 8 beamlines,
with first users being accommodated between January
and August 2008. These beamlines will continue to
be optimised as we install and commission a further 14
beamlines at a rate of approximately 4 per year. The
software for the beamlines is based on the Experimental
Physics and Industrial Control System (EPICS) toolkit [3,
4] for hardware control and Generic Data Acquisition
(GDA) [5, 6] framework for the scientific user interface.
The interface between the two layers is defined in terms
of XML files which are generated from information in the
EPICS database, and which, in turn, instantiate Java objects
in the upper layer software. Both layers are sufficiently
flexible to be developed in common across all beamlines,
with minimal beamline specific software.

This paper focuses on the EPICS layer, with the first
portion devoted to the build and release system shared
by the beamlines, and the second portion focussing more
specifically on our approach to motion control.

EPICS BUILD AND RELEASE SYSTEM

The core of the beamline build system is a spreadsheet
(see Figure 1) that specifies all the beamline control points
and their associated configuration parameters. Each control
point type (Motor, Analog I/O etc) is a different worksheet
and so all the parameters for a particular control point
type can be viewed at one time. At build time, the
spreadsheet is parsed by a Python script to generate a
number of configuration files for creating EPICS databases,
EPICS displays and the XML interface files for the GDA
system. The values in the spreadsheet are inserted as

Software Technology
108

EPICS parameters, or combined with information extracted
from the EPICS database to describe GDA objects, or to
provide parameters to substitute into displays to configure
them they are invoked.

We have found this spreadsheet format an easy way to
summarise and exchange a large amount of information.
It also keeps the entire configuration in a single place, no
matter what the ultimate use of the information is. We
have considered using databases and/or XML files instead
of a spreadsheet for storage, but have not implemented
this at this stage. Whilst these formats do have some
software advantages, they also have some disadvantages -
the spreadsheet is really a lowest common denominator for
this kind of information interchange.

All beamline software is kept in a common Subversion
repository. Software is developed in a test area, but during
user beam time all systems boot off well defined released
versions. The software release mechanism is triggered by
the developer, but is done by a script in a well defined and
controlled manner:

e The system is initially checked out into a scratch area
and built and tested for errors.

o If this is successful the released is tagged and queued
for building on the build server.

e The build server checks the release tree out read only
from the subversion repository and builds it in the
correct place.

To preserve the integrity of the releases the build server
only exports the release file system in a read-only form,
and it is not part of the normal authentication domain and
so access is highly restricted.

A similar approach is taken for identifying which
software release is actually running at a given time. All
systems boot by reading a read-only file on the build server,
which has a two-column table - the first column being the
system name, and the second the system initialisation file.
Updates to this file can only be done by updating the source
code repository and queuing an update on the build server.
Whilst this could clearly be done using a database, we
have again adopted this files based approach for simplicity
because it is the lowest common denominator.

Overall, this care in source code and release control has
provided us with a firm development foundation. Whilst
when a software problem surfaces it is often shared by
many beamlines, we are confident when it is fixed it is also
fixed across site.

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA TPPA10
FORMAT <CC<CC<EI\/FILENAI\.DEFEDM PREFIX GV VAC
#Notes: The macro for an empty string is ™ (two double quotes). No Commas in names
[NAME [DESCRIPTION loc P NMJNFLINTEINCUNCANPNNPdM1 M2 M3 M4
EDM_MACROS: z - E E E
DEFAULTS
[ABO__|Front End Absorber _|BL18I-VA-IOC-01 FE18I-RS-ABSB-02 [0 [0 [0 _[o o [t |o
IGVO Front End Valve BL18I-VA-I0C-01 FE18I-VA-VALVE-02 0 0 0 0 0 1 0
[SHTR1|Front End Shutter __|BL18I-MO-10C-01 FE18I-PS-SHTR-02 [0 [0 [0 _[o o |1 _|o
GBC1 [Gas Brem Coll 1 BL18I-MO-10C-01 BL18I-RS-ABSB-01_[0 [0 fo fo Jo Jo o
BX Diagnostic 1 BL18I-MO-IOC-01 BL18I-DI-PHDGN-01 [1_[1 [0 | [1 o |1 [POSN
51 1st (Aperture) Slits__|BL18I-MO-10C-01 BL18I-AL-SLITS-01 |4 2 [8 Jo Jo Jo Jo [xa |xB YA___|YB
D2 [Diagnostic 2 BL18I-MO-IOC-01 BL18I-DI-PHDGN-02 [1_[1 [0 |1 [1 o |1 [POSN
IGV1 Gate Valve 1 BL18I-VA-IOC-01 [BL18I-VA-VALVE-01 0 0 0 0 0 1 0
HFM__[Toroid Mirror BL18I-MO-IOC-01 BL18I-OP-HFM-01_[8 [3 |4 Jo o _Jo o [¥1 Y2 Y3 X1
[Gv2 Gate Valve 2 BL18I-VA-IOC-01 [BL18I-VA-VALVE-02 0 0 0 0 0 1 0
D3 [Diagnostic 3 BL18I-MO-10C-01 BL18I-DI-PHDGN-03 [1_[1 [0 |+ [1 o |1 [POSN
AP [Aperture BL18I-MO-IOC-01 BL18I-AL-APTR-01_J0 [1_ |2 [o o _[o_|o
GBC2 [Gas Brem Coll 2 BL18I-MO-10C-01 BL18I-RS-ABSB-02 [0 [0 o fo Jo o o
Figure 1: Example of a part of tab of a beamline development spreadsheet
MOTOR CONTROL

The Delta-Tau PMAC motion controller was chosen
as a standard controller for the Diamond beamlines in
part due to the ability to synchronise motion across many
axes, which will become important as the beamlines are
optimised. Other features of the controller have proved
to be beneficial during development — particularly the
fact that the entire PMAC range of products use the
same communications protocol, and support for VME
backplane, serial, and Ethernet connectivity has involved
little extra work. This flexibility of form factor is proving
to be most useful as more beamlines are designed —
each with their own specific requirements. We can retain
software compatibilty, using any of the PMAC family of
controllers, whilst allowing scope for differing packaging
and connectivity.

History

The EPICS ‘motor’ record [10] is a useful abstraction of
the control points needed to drive a motor system, such as
demand position, readback, limit positions etc. It also adds
the ability to do a simple translation (offset and direction)
between “dial” units and “user” units.

However, as it has evolved to support more and
more controller types, the structure of the “device”
and “driver” layers, between the motor record and the
controller hardware have become increasingly convoluted
and specific to each controller. The existing structure
(shown in fig 2) limits the capabilities of the controller to
the common superset that the motor record provides.

The sideways connectivity and the fact that a consid-
erable amount of polling and communications code is in
the common modules prevents easy access to the raw
communications with the controller. This in turn prevents
the use of extended capabilities of the controllers.

We have written a new interface layer for motor
controller drivers which is clearly defined and supports
the existing motor record, but also allows extension to
support controller specific features. We have provided
implementations of drivers for the Delta-Tau PMAC motor
controller [11], and for a simulation motor [12]. Mark

Software Technology

[deVOMS]—[devMotorCommon]

[drvOMS]—[drvMotorCommon]
[

——Ll o
LHardware

Figure 2: Existing software structure — complex interfaces

Rivers [9] has provided an implementation for the Newport
MM4000 and XPS motor controllers.

New Driver Model

In order to support the new interface layer, we have
written common “device” and “driver” layer components
for the existing motor record. They have been written
using the Asyn driver framework [8], allowing both the
existing motor record and other standard EPICS records to
simultaneously connect to the driver. The synchronisation
of the access to the driver is performed by Asyn, which is
extremely robust and has been widely used and tested.

[motor] [motor]
|
[deVAsynMotor] [devAsynAi]
ASYN
drvAsynMotor

API API
drvAsynXPS drvAsynPMAC

Figure 3: New structure

In the new structure (fig 3), there is a marked reduction
in code, the new codebase being approximately 2-3 times

109

TPPA10

smaller than before, both in terms of lines of code and
number of files. More code is used in common, improving
test coverage.

Extensions to support particular controller features can
be introduced into the driver and the new interface layer
(marked “API” in figure 3) extended, with upper level
code written directly against that, or a feature of the Asyn
interface can be used which allows new drivers to be
inserted (interposed) along an existing communications
path. Again, this feature is standard within Asyn, and has
been widely tested.

One clear additional advantage of the use of the Asyn
framework is that because an individual motor is connected
to a named “port”, switching from a real application
to a simulation can be achieved solely by defining a
simulation port, rather than one connected to a real motor
controller. Thus the majority of the application is simulated
unchanged. This has proved extremely useful when
integrating EPICS with GDA, as we have been able to
provide simulations of the entire motion control for a
beamline well in advance of the arrival of any hardware.

The PMAC driver and the new framework have been in
operation successfully on 8 beamlines for the majority of
2007.

Future Work

We are currently developing a driver within the same
framework to control PMAC co-ordinate systems, rather
than individual motors, which will allow more of the
complex capabilities of the controller to be realised. For
example, the controller supports complex kinematics to
allow structures such as hexapods and multi-joint robot
arms to be controlled. Previously, bespoke software had
to be written for these systems, but now the standard motor
records will be able to be used. The only bespoke software
will then be the configuration of the controller itself.

The interface at present includes functions for co-
ordinating simultaneous and profiled motion across several
axes, but these are not yet implemented in any of the
current drivers. We plan to extend the implementation of
the drivers to encompass these interfaces, and to develop a
set of EPICS records to control such motion.

Support for a number of other motor controllers is at
an early stage, including work at Diamond on the OMS
MAXv and OMS58 series controllers.

CONCLUSION

Common approaches and code across all beamlines at
Diamond has contributed to successfully commissioning
all of the initial beamlines simultaneously. = Whilst
the development overhead for the software has to be
met anyway, we are now in a position to continue an
aggressive programme of further beamline development
and commissioning at a rate of 4 beamlines per year over
the next 3 years.

Software Technology
110

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Rewriting the motor controller infrastructure code has
given us access to the extra capabilities of advanced
motor controllers, with an easy upgrade path for further
extensions in the future.

REFERENCES

[1] N.P. Rees, W.C. Pulford, M.A. Norbury, PJ. Leicester,
E.L. Jones, M.T. Heron, P.N. Denison, “Development of
Photon Beamline Software At Diamond” ICALEPCS 2005,
Geneva, Switzerland, Oct 2005.

[2] R.P. Walker, "Progress with the Diamond Light Source
Project”, EPAC 2004, Lucerne, Switzerland, July 2004.

[3] L. Dalesio, J. Hill., M. Kraimer, D. Murray, S. Hunt, M.
Claussen, C. Watson, J. Dalesio, "The Experimental Physics
and Industrial Control System Architecture,” ICALEPCS
1993, Berlin, Germany, Oct 1993.

[4] The Experimental Physics and Industrial Control System.
http://www.aps.anl.gov/epics

[5] M.J. Enderby & W.C. Pulford, "The Generic Data Ac-
quisition Project”, NOBUGS 2004, Villigen Switzerland,
October 2004.

[6] The Generic Data Acquisition Project. http://www.gda.
ac.uk/

[7] Advanced Photon Source Beamline Control and Data
Acquisition Group: synApps. http://www.aps.anl.gov/
aod/bcda/synApps/index.php

[8] M.Kraimer, E.Norum, M.Rivers, G.Jansa, “asynDriver:
Asynchronous Driver Support”, http://www.aps.anl.gov/
epics/modules/soft/asyn/

[9] M. Rivers, motorR6-2-2.tar.gz see
motorApp/NewportSrc/*

[10] T. Mooney, J. Sullivan, R. Sluiter et al., “EPICS: Motor
Record and Device/Driver support.”, http://www.aps.anl.
gov/upd/people/sluiter/epics/motor/index.html

(101,

[11] http://www.gmca.aps.anl.gov/ TPMAC2/tpmac3-4.zip,
pmacApp/pmacAsynMotorSrc/*

[12] motorR6-2-2.tar.gz see [10], motorApp/motorSimSrc/*

