
XAL APPLICATION FRAMEWORK AND BRICKS GUI BUILDER*
Thomas Pelaia II, Oak Ridge National Lab, Knoxville, TN 37830, U.S.A.

Abstract
The XAL [1] Application Framework is a framework

for rapidly developing document based Java applications
with a common look and feel along with many built-in

user interface behaviors. The Bricks GUI builder consists
of a modern application and framework for rapidly

building user interfaces in support of true Model-View-
Controller (MVC) compliant Java applications. Bricks

and the XAL Application Framework allow developers to
rapidly create quality applications.

INTRODUCTION
The XAL Application Framework is a mature

framework for rapid development of applications with a
common look and feel and with many features that users

expect from modern applications. Over four dozen
applications have been written using this framework. The

Bricks application is a graphical user interface layout
application which assists the developer in creating

application views.

APPLICATION FRAMEWORK

Introduction

The application framework provides the foundation for
applications which have a graphical user interface. It

provides end users with applications that share a common
look and feel while providing developers an environment

for rapid development of document based applications.

Overview

The framework is event driven and manages the
processing of several events which are common to

document based applications. An application participates
in the framework by providing three classes that subclass

abstract framework base classes and three resources that
provided data needed by the framework. The three classes

override and implement methods which get called by the
framework during different phases of the application’s life

cycle. This allows a division of responsibility between the
framework and the application. The framework shoulders

as much responsibility as it can for behaviors common
across all applications while allowing the developer

flexibility for customization. The application framework
is in the XAL package: gov.sns.application.

Resources

Resources are supporting data files that reside in the
“resources” subfolder of an application. The framework

provides a mechanism for easily loading resource files.
There are three special resource files which the developer

typically provides and are processed automatically by the
framework. These files are the application information

file, the main help file and the menu definition file. These
files each have a specific name and well defined format.

The application information file is a simple properties
file named “About.properties” which provides

information that will be formatted and displayed in the
application’s “About Box.” This information includes the

application’s name, version, description, a list of authors,
the developer’s affiliation and the date of the release.

The main help file is named “Help.html” and it is an
HTML file that will be loaded and displayed for the user

in a standard help window should the user select the
“Help” menu item. The developer may provide additional

supporting files in the resources folder such as images and
other pages as desired. If the help file is omitted then the

help menu item is disabled.
The menu definition file is a simple properties file

named “menudef.properties” which allows the developer
to customize the menu bar and the toolbar which appear

with a document. The developer may specify menu bar
menus, toolbar buttons, menu items for each menu and

sub menu, labels for the menu items and toolbar buttons,
groups for radio style menu items and toolbar buttons and

an action key for each menu item or toolbar button. The
action key allows the developer to assign an action to the

menu item or button at runtime. A separator can be
specified simply by supplying a dash. The menu definition

file is optional and if omitted, the standard menu bar and
toolbar will be used.

The standard menu bar includes the File, Edit, View,
Window and Help menus. Each menu has the standard

suite of menu items that users have become accustomed
to expect from using commercial applications.

Principle Classes
The three principle custom classes which the developer

provides for their application are the application adaptor,
document and document window. The framework

provides abstract base classes with abstract methods the
subclasses should implement. Other methods may be

optionally overridden for further customization.

*ORNL/SNS is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-
AC05-00OR22725

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA TPPA09

Software Technology

105

The application adaptor is a subclass of the

framework’s ApplicationAdaptor base class and
provides application wide callbacks and information

about the application. Only one instance of this class is
instantiated for an application. Typically, it is also the

main class responsible for launching the application along
with receiving the command line arguments if any. Table

1 lists the methods that are typically overridden by the
application adaptor.

Table 1: Application Adaptor Methods

Method Responsibility

readableDocumentTypes Provide a list of
document types the

application can open

writableDocumentTypes Provide a list of
document types the

application can write

newEmptyDocument Create a new empty
document

newDocument Create a new
document given a

URL to the document
source

applicationName Provide the
application’s name

applicationFinishedLaunching Optional callback
which is called when

the application has
finished launching

customizeCommands Implement actions for
menu definition items

The document subclass specifies document properties
and implements document callbacks. An application may
have multiple instances of a document class and even
(though rarely) have more than one document class. The
document is responsible for reading and writing the file
that supports a document as well as managing its
associated main window. In the MVC pattern, the
document takes the role of a controller and handles
instantiating both the model and the main view (document
window). The document also typically implements the
actions for the menu items defined in the menu definitions
file.

The document has a method for setting whether the

document has unsaved changes. If a document has
unsaved changes, the framework enables the various save

buttons and menu items and appends an asterisk to the
end of the document’s path in the title bar.

Table 2: Common Document Hooks

Method Responsibility

makeMainWindow Instantiate a document’s
window

customizeCommands Implement actions for
menu definition items

The document window subclass is primarily
responsible for creating and managing the views within
the document’s associated main window. Providing a
custom window class is now optional since the
introduction of the bricks package as discussed later in
this paper.

Event Model

The application framework has an event driven model
that calls methods in the application’s supplied classes to
either get information about the principle components
(application, document or window) or allow those
components to perform a task. For example, a custom
document class has a method to load that document from
a file. The framework defines a menu item for opening a
document. When the menu item is selected, the
framework calls a method in the document to determine
the supported file types, present the standard file open
dialog box with the appropriate filters for the acceptable
file types, handle the user’s selection and if the user has
selected one or more files, calls a method in the
application adaptor to open a new document which is then
responsible for loading the data. The framework
automatically updates the document’s title bar to display
both the name of the application and the document’s file
path in response to opening a document.

BRICKS

Motivation
A challenge when developing applications in Java is the

effort required to build a user interface while adhering to
the MVC design pattern. In a typical XAL application, the
developer would write the window class using the Java
Swing packages. Typically, that code would describe the
layout of the views within the window, define the actions
of controls (e.g. buttons) and populate the container
elements (e.g. tables and lists). In practice, this makes it

TPPA09 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Software Technology

106

very difficult to decouple the view and the controller as

required by MVC. Also, the developer is forced to spend
time laying out elements in code only to find that the

display of the window doesn’t match their expectation.
This results in less time spent on the actual purpose of the

application and less than ideal user interfaces.
Many Integrated Development Environments (IDEs)

for Java include graphical interface design editors, but
they share common shortcomings. They typically

generate Java source code for each window. While these
tools address the time that it takes to build a user

interface, they do nothing to address MVC compliance
and they often make the problem even worse. When the

user edits the code for the window, they must now
navigate through complex and often proprietary code that

is generated by the tool while being careful not to edit
certain parts of the code reserved by the tool.

Furthermore, this approach ties development to a single
proprietary IDE choice and does little to help with

building user interfaces for scripts written in Java based
scripting languages such as Jython [2] and JRuby [3].

Bricks is an XAL application which allows the
developer to rapidly construct user interfaces while

naturally adhering to MVC compliance. This design for
Bricks is inspired by OpenStep’s™ Interface Builder™

[4]. A Bricks document saves the resulting window
definitions in a XML file. A Bricks package provides the

runtime methods for generating the views from a Bricks
document when it is time to run the target application.

These methods are typically called in the controller.
The main window for a Bricks document displays a

hierarchy of windows and their views for an application.
A palette of views is provided so the developer can

simply select and drop views into the view hierarchy. A
preview window updates to reveal how the window will

appear when open in its application. Notional data is
provided for tables and lists in the preview so they have a

nontrivial appearance. An inspector allows for quick
editing of many properties for a selected view. Copy, Cut

and Paste support along with drag and drop support make
it easy to rearrange views in the view hierarchy window.

The built in code assistant helps developers avoid errors
by allowing them to paste references to views right into

their code independent of their IDE.
Once the views are constructed, the developer needs a

way to access the views from within the controller classes
and display the window. The Bricks package has a method

to instantiate a window reference from a bricks document.
The window reference has a method to get any view

within the window by passing a tag that the developer
assigned to the view during construction. Because Bricks

uses this runtime approach to generate the views, no

compilation is required which makes it ideal for use with

Java based scripting languages.
The XAL application framework also has explicit

support for the Bricks runtime. Convenience methods in
both the application adaptor and document base classes

make it easy to load the bricks definition file located in an
application’s resource folder. This means that the main

document window subclass for an application no longer
needs to be provided when using the application

framework. This results in less time spent coding user
interfaces and more time available for developing an

application’s model.

SUMMARY
The XAL application framework and the Bricks tools

can be used together or independently of each other to

rapidly build Java applications that offer a great user
experience.

REFERENCES
[1] http://neutrons.ornl.gov/APGroup/appProg/xal/

xal.htm

[2] http://www.jython.org

[3] http://jruby.codehaus.org

[4] Nancy Craighill, OpenStep for Enterprises, John
Wiley & Sons, Inc., New York, NY, 1997.

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA TPPA09

Software Technology

107

