
CONTROL OF ACQUISITION AND CLUSTER-BASED ONLINE
PROCESSING OF GRETINA DATA*

C. Lionberger#, M. Cromaz, LBNL, Berkeley, CA 94520, U.S.A.

Abstract
The GRETINA gamma ray tracking detector will

acquire data from 112 digitizer modules in 28 VME
crates. The data will be distributed to a cluster of on the
order of 100 computer servers for the computation-
intensive initial processing steps which will be run
concurrently with data acquisition. A slow-controls
system based on EPICS controls all aspects of data
acquisition and this online processing. On the cluster,
EPICS controls not only when processing is occurring but
which processing programs are running on which nodes
and where their inputs and outputs are directed. The
EPICS State Notation Language is used extensively both
in the VME and cluster Environments.

GRETINA
GRETINA (Gamma Ray Energy Tracking In-beam

Nuclear Array) [1] is an array of 28 36-segment
germanium crystals. The crystals are grouped into 4-
crystal modules designed to be closely packed to cover
one-fourth of a sphere, with an inner radius of 15 cm and
a germanium thickness of 9 cm. The intent is to
distinguish the locations and energies of the multiple
interactions a gamma ray makes within the germanium
shell as it decays, with a spatial resolution of about 2.0
mm.

Digitization of the segment signals is performed by
custom VME-based signal digitizer modules. Each VME
module hosts 10 digitizer channels. The digitizers have
16-bit ADCs which sample at a 100 MHz rate and can
store traces of up to 498 readings per channel per event.
In addition to the trace information the digitizers calculate
channel energies and associate timestamps derived from a
global clock with each segment event. Readout of signals
within the entire array at a selected time is enabled by a
trigger system composed of custom VME modules
connected to the digitizers by high-speed links. The four
digitizer modules necessary to instrument a crystal are
serviced by a single VME processor board. This board
reads out the signals from FIFO memories on the
digitizers, sorts them into a time-ordered data stream and
provides the data to a computing cluster for online
processing.

The first stage of online processing is signal
decomposition, a compute-intensive process of
determining the number, location and energies of
interactions within the crystal during the time sampled by
the digitizers. Signal decomposition is trivially

parallelizable as the signals from one event in one crystal,
termed a crystal event, may be decomposed independently
of signals from other crystals or other times. The
resulting position and energy information is combined
 with time-corresponding information from the other
crystals in the array by the global event build process, so
that the data appears for the first time as a single stream.
This stream is fed to the tracking process which uses
physics constraints to order the interactions which
occurred during the same trigger and reject illegal
combinations.

COMPUTING ARCHITECTURE

When looked at from the point of view of a single
stream of data acquisition and processing the system data
flow can be represented as a pipeline. Each stage of the
pipeline is composed of an architectural unit or pattern
termed a pipeline component. (Figure 1)

Figure 1: Pipeline component internal elements

The control element mediates all external controls, the
input element obtains input data from the previous
pipeline stage or from the digitizers at the beginning, the
processing element performs the data manipulations for
which the pipeline component is intended, and the output
element sends data to the next stage of the pipeline, or to
disk storage at the end. Input and output elements are
interfaced to the processing element using queues to
isolate processing from the vagaries of I/O and attention is
given in the interfacing of the control element to the other
elements to responsiveness of the controls combined with
graceful termination or starting of processing. Except for
the input and output queues each element is a separate
thread of execution.

The entire pipeline is depicted in figure 2. Data
originates in the digitizers and is sent to the signal
decomposition nodes. From there it is gathered by the
global event builder and sent to the tracking nodes. The
outputs of the tracking nodes are again sorted into a time
ordered stream and stored to disk by the data storage
node. In addition there is a logging node. Although not
in the pipeline it has the same architecture as a pipeline
node. It can accept log entries from any node at any time

*Work supported by U.S. Department of Energy,
Office of Science.
#calionberger@lbl.gov

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA TPPA05

Software Technology

93

and stores them in a first-in-first-out order in a log file for
analysis or debugging purposes.

Figure 2: Data acquisition and processing

A high degree of parallelism is employed both in the

data acquisition and online processing stages. As
mentioned above data acquisition is performed in parallel
from the 28 crystals by 28 VME-based systems. Each
VME system in turn provides data to several cluster
computers for signal decomposition. Signal
decomposition relies on large static crystal-dependent
data structures, so decompositions of data from only one
crystal are performed in any one computer. As well as
rendering the data more comprehensible, signal
decomposition reduces its size by a factor of about 30.
Because the data does not come together into a single
stream until this compression has been performed it is
possible to use gigabit Ethernet to connect all computers
even though each VME computer is required to be able to
provide 10 Mbytes per second of data.

Currently quad-core computers have become common,
and it is expected that by the time the final system is
implemented in 2009 most of the computing cluster will
consist of 8-core processors. The pipeline component
pattern is adapted to multiple-core CPUs by incorporating
additional threads running whatever elements are most
critical. In the case of signal decomposition this is the
central computing element; in the case of global event
build it is the input element.

CONTROLS
 EPICS (Experimental Physics and Industrial Control
System) [2] is used for the hardware interfacing of slow
controls for the digitizer and trigger modules, for
controlling data acquisition and processing, and for
configuring the computing cluster.
 EPICS device supports are used for interfacing EPICS
PVs (Process Variables) to the digitizer modules and the
trigger modules. Each digitizer board has about 40 PVs
which control and monitor board-wide items and 16 PVs
for each of the 10 digitizer channels. The trigger module
supports 175 I/O points; 5 trigger modules are used in the

system. Because a given parameter is usually set to the
same value on all boards and channels in a run, provision
is made for single-point control using a set of global
controls distributed by data fanout PVs to the hardware
PVs. EPICS autosaverestore is used for the individual
parameters with PINI=YES set, but is used only to set the
value of but not process the global PVs, so that if certain
channels are set up uniquely this will survive rebooting.
The EPICS PVs which monitor and control the hardware
can be accessed by a set of edm screens.
 The highest level of control is run control. Run control
has two major modes, run and setup. During setup mode
system parameters can be changed but data cannot be
acquired; during run mode data can be acquired but
parameters cannot be changed. Parameter change control
is implemented using channel access security and can be
compromised at that level for testing or tuning purposes.
The user interface to run control is a python GUI using
wxPython for the graphics. The script uses the fermilab
python channel access interface with some enhancements
allowing monitoring that were added at LBNL. Run
control requires the setting of certain parameters such as
data storage location before a run is allowed, stores run
information, and sets a run start flag. All pipeline
components are expected to respond to the run flag by
going into run mode; if any do not it is detected by a
sequencer program that monitors the state of each
component. Similarly, retraction of the start flag to stop
the run is expected to cause the pipeline components to
respond but there is no hard interlock. The summarizing
program can be told to ignore any component by setting it
offline.

 Pipeline components are implemented using SNL
(EPICS State Notation Language). SNL is suitable for this
role because it implements each of the state machines in a
state program as a separate thread, it has a very
straightforward yet event-driven interface to EPICS PVs,
and it interfaces C code directly. Each element (except the
queues) is a separate state machine; all state machines in a
pipeline component are generally in the same SNL
program.
 A major problem in parallel systems is that of load-
leveling: making sure that computing resources are
available proportional to need. The loading of the signal
decomposition nodes connected to a single crystal will be
evenly spread between those nodes because they obtain
data from the data acquisition computer on demand;
architecturally the data acquisition computer is a data
server and the decomposition nodes are clients. Not all
crystals will have the same data rate, however, and so
different numbers of signal decomposition nodes may
need to be assigned to each. This is just one example of
the flexibility that is required in assigning jobs to
computers in the cluster.
 The computing cluster runs Warewulf [3], a cluster
software suite used at LBNL. Thus all the nodes except
the master node boot the same linux software image. The
pdsh parallel shell command is used to start a program
launcher SNL program on all the nodes. The launcher

TPPA05 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Software Technology

94

program examines a set of EPICS PVs which specify
what program should run on each cluster node and start
that program. Other parameters such as which crystal each
decomposition node is to obtain data from are also
indicated by EPICS PVs. The launchers monitor the
program name and number specifications and if any is
changed by the operator the launcher will kill the

Figure 3: edm screen controlling program assignment to
cluster nodes

currently running program and start the new one. If the
new one fails to start, eg, if it doesn’t exist, the launcher
will retry every 30 seconds. Also if the program crashes
the launcher will be signaled and will restart it. Thus the
mix and assignment of programs running on the cluster
can easily be changed without a cluster restart. Currently
these assignments are all controlled from a GUI (figure
3).

CURRENT STATUS
The GRETINA software package development is

scheduled to have 5 major releases, the final one to be
shipped with the instrument in early 2011. The second
release has just been completed and tested on a cluster
containing 8 servers from a prototype acquisition system
serving data from 3 crystals using 1 VME cput and 15 8-
channel prototype digitizers. At this time the digitizer
control, program launchers, data acquisition code, signal
decomposition nodes and logging nodes are considered to
be nearly in their final forms, but global event build,
tracking and data storage functions are combined in one
program. In addition considerable development is still
required in the trigger system and a relational database
system to store crystal characteristics and an EPICS
interface to it are still in the design stages. An online
system to sample the data stream and do some higher-
level analysis in near real time is also planned.

CONCLUSIONS
The EPICS system is suitable for implementation of

parallel system control; this has been well accepted at the
level of hardware control. In GRETINA it is being used
for control of parallel software system running on a
computer cluster as well.

REFERENCES
[1] Project home page at http://grfs1.lbl.gov/
[2] http://www.aps.anl.gov/epics/
[3] http://warewulf.lbl.gov

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA TPPA05

Software Technology

95

