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Abstract 
In 2006, LabVIEW Object Oriented Programming 

(LVOOP) became available as a new feature with 
LabVIEW version 8.20. This work accomplishes a design 
study in order to investigate the use of LVOOP to control 
system development. With LVOOP, the way of object-
oriented programming must be reconsidered, since this 
approach reveals quite a few differences compared to 
conventional object-oriented programming. 

INTRODUCTION 
Concept of "Dataflow" 

Compared to text based languages, the graphical 
programming language LabVIEW reveals a fundamental 
difference which is the so-called paradigm of "Dataflow" 
as indicated in Fig. 1. 

 
Figure 1: Concept of "Dataflow". 

Data flow through a wire from source to drain. There 
are different types of wires for the respective data types 
(integer, double, string, etc.). As shown in Fig 1., a source 
can be a so-called "control". The emerging data can be a 
copy of the default value of that control or it can be a 
value that has been passed to the control, in case when the 
code shown in Fig. 1 has been called by some other piece 
of code. As an elementary consequence, the developer of 
the code above has no control when and where memory is 
allocated for the data flowing through the wire. The well 
known concept of variables does not apply to LabVIEW. 
Classical variables do not exist. 

In Fig. 1, one source of data is shown together with two 
drains of data that are connected by a so-called "wire 
fork". To be consistent with dataflow, wires use "by-
value" syntax. When a wire forks, its value is duplicated. 
On the one hand, duplicating data requires more memory. 
On the other hand, the "by-value" syntax implies the 
value on each individual wire to be independent from all 
other wires. Each wire together with the operations along 
that particular wire represents an own thread. By this, the 
concept of dataflow implies a natural parallelism and is 
inherently thread-safe due to the "by-value" concept. 

Concept of LVOOP 
Object oriented programming with LabVIEW extends 

the concept of "Dataflow" to the concept of "Objectflow" 
[1]. A class in LVOOP consists merely of a user defined 
data type together with methods that can be applied to 
values of that data type. Once could say that LVOOP 
allows the developer to create object oriented wires. 
Object orientation in LVOOP means the following. 

1. Simple Inheritance. Neither multiple inheritance 
nor interfaces as in Java. 

2. Strict encapsulation. Data of a class are always 
private. Public or protected data do not exist. 

As in other object oriented languages, a derived class 
may overload (naming convention of LVOOP: 
"override") an abstract method of its base class. However, 
the override method must have exactly the same input and 
output parameters as the respective method of the parent 
class. 

The concept of dataflow requires objects to flow 
through their "class wires" from source to drain, like the 
flow of data in Fig. 1. This has three fundamental 
consequences. 

1. Objects contain only data and no active code. 
Agents do not exist. 

2. LabVIEW does not have classical variables. For 
the same reason, LVOOP has no equivalence to the 
concept of a constructor and a destructor. There 
are neither constructors nor destructors. 

3. Objects can only be accessed "by value" and never 
"by reference". 

The fundamental differences between LVOOP and 
conventional object oriented languages prevent a straight-
forward implementation of design patterns that are based 
on the idea of objects as entities [2]. However, many of 
those design patterns are useful for designing control 
systems, and need to be reinvented with respect to the 
dataflow paradigm. 

DESIGN PATTERNS 
Reference Pattern 

The same object can not be used by two independent 
wires. A wire fork, as shown in Fig. 1, just creates an 
identical copy of the object flowing from the source to the 
two drains. In order to profit from the inherent parallelism 
in LabVIEW, the reference pattern is required. 

The reference pattern makes use of one of the event 
mechanisms that is part of LabVIEW. A so called 
message queue is a shared resource that is identified via a 
reference. It provides a buffer allowing a sender to feed 
data into the queue from one thread. A receiver waits in a 
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second thread to obtain data from the same queue. Since 
LVOOP objects are only data, they can flow from a 
source into the message queue and can be retrieved 
somewhere else. This situation is depicted in Fig. 
2.

 
Figure 2: Idea of a referenced object. Top: Insert an 
object to a message queue. Bottom: Retrieve an object 
from a message queue. 

In case there is no second thread retrieving the object 
immediately, the object will remain in the queue until it is 
retrieved or the program terminates.  

 Figure 3: Usage of the reference pattern. 

Fig. 3 depicts an example for using a reference class 
that is part of the reference pattern. The reference class 
provides create, checkout and checkin methods. An object 
flows into the create method where a reference object is 
created and the object is inserted into a message queue 
(see Fig. 2, top). The reference object contains and 
protects the reference of the message queue as private 
data. The wire fork in Fig. 3 duplicates the reference 
object, but not the original object which is in the message 
queue. Two identical copies of the reference object are 
now used in two threads represented by two loops. Each 
time the loop iterates, the respective thread uses the 
checkout method and must wait, until the object is 
available in the message queue. It performs an action on 
the object and re-inserts the object into the queue using 
the checkin method. To conclude, the reference pattern 
allows using one object in different threads and provides 
mutual exclusion. 

Factory Pattern 
The factory pattern allows for creating and initializing 

objects of any class at runtime. An overview on the 
factory pattern is depicted in Fig. 4. 

Figure 4: Factory pattern. 

Shown are three classes, the factory class, an 
application specific factory CSOOMMFactory and one 
example of a class myClass. For producing objects, 
myClass must be derived from the factory class and must 
implement the override method initialize. The 
CSOOMMfactory class is also derived from the factory 
class and need to implement the override method classes 
which contains an object constant for each class (here: 
myClass) to be produced. 

DESIGN STUDY CSOOMM 
This design study aims at setting up a simple, 

distributed, event-driven and object oriented control 
system by combining LVOOP with DIM as 
communication layer. 

Object Management 
LVOOP does not provide an object management. 

Within CSOOMM, this is implemented by joining the 
reference pattern and the factory pattern. An 
objectManager library provides _new and _delete 
routines as well as routines to convert an object name into 
its reference and vice versa. An example for using the 
_new operator is shown in Fig. 5. 

 
Figure 5: Creating a referenced object. 
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Connecting to DIM 
The dimProcessor class is one of the base classes 

within CSOOMM and provides and encapsulates the 
interface to DIM [3, 4]. For ease of use, it is restricted to 
two data types namely arrays of double values and 
strings. The most important features of this class are 

1. declaring and publishing DIM services,  
2. declaring DIM commands,  
3. create a periodic action timer,  
4. an abstract method for handling received 

commands, 
5. an abstract method for handling updated services, 

and 
6. an abstract method for handling periodic actions. 
The abstract methods of the dimProcessor class 

correspond to the call-back methods that can be used in 
the DIM environment. 

Application Example 
It is not possible to call LabVIEW code from other 

applications directly. Thus, the abstract methods of the 
dimProcessor class can not be used for direct call-back by 
the shared libraries of DIM. As objects in LVOOP are 
passive and provide no active threads, active LabVIEW 
code is required as an additional step and must be 
provided by the application program. 

 
Figure 6: Example application for handling DIM 
commands. 

Fig. 6 shows an example application as LabVIEW code 
that demonstrates the handling of DIM commands in a 
while-loop. The following is shown from left to right. 

1. Wait, to receive a DIM command buffer via a 
message queue, 

2. unpack the command buffer, get the respective 
reference object via the object management tools, 
unpack the command data, 

3. checkout the object, 
4. abstract method for handling commands of the 

dimProcessor class, this will call the respective 
override method of the class of the object, and 

5. checkin the object. 
Please note, that the checked-out object is typecasted to 
an object of the dimProcessor class. Thus, the code is 
class independent, as long as the class of the checked-out 
object has been derived from the dimProcessor class. The 
shown example demonstrates the re-usability and 
simplification of code, which results from using abstract 
methods provided by LVOOP. 

STATUS AND CONCLUSION 
A design study has been performed to successfully test 

the applicability of LVOOP to designing control systems. 
Testing of performance yielded the following results. 
Attribute data of classes are always private. However, the 
memory management of LVOOP is well done and 
accessing those data via class members can be 
accomplished quickly, even if the amount of data exceeds 
10Mbyte. It is easily possible to instantiate more than 
1000 device objects per PC, which corresponds to about 
1000 physical devices per PC. When designing a control 
system, the use of abstract methods of base classes 
simplifies coding and greatly enhances reusability. As the 
only draw-back of LVOOP in LabVIEW version 8.20, 
there is no code sharing when executing the override 
methods to abstract methods. This restricts the usefulness 
of LVOOP in multi-threaded applications. However, this 
problem seems to be solved with the newer version of 
LabVIEW 8.5. 

Although this design study demonstrates the usefulness 
of LVOOP successfully, this approach must be confirmed 
by application to a real control system like, as an 
example, the CS-framework [5]. 
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