
CONTROL SYSTEM DESIGN USING LABVIEW OBJECT ORIENTED
PROGRAMMING

D. Beck, H. Brand, GSI, Planckstraße 1, D-64291 Darmstadt, Germany

Abstract
In 2006, LabVIEW Object Oriented Programming

(LVOOP) became available as a new feature with
LabVIEW version 8.20. This work accomplishes a design
study in order to investigate the use of LVOOP to control
system development. With LVOOP, the way of object-
oriented programming must be reconsidered, since this
approach reveals quite a few differences compared to
conventional object-oriented programming.

INTRODUCTION
Concept of "Dataflow"

Compared to text based languages, the graphical
programming language LabVIEW reveals a fundamental
difference which is the so-called paradigm of "Dataflow"
as indicated in Fig. 1.

Figure 1: Concept of "Dataflow".

Data flow through a wire from source to drain. There
are different types of wires for the respective data types
(integer, double, string, etc.). As shown in Fig 1., a source
can be a so-called "control". The emerging data can be a
copy of the default value of that control or it can be a
value that has been passed to the control, in case when the
code shown in Fig. 1 has been called by some other piece
of code. As an elementary consequence, the developer of
the code above has no control when and where memory is
allocated for the data flowing through the wire. The well
known concept of variables does not apply to LabVIEW.
Classical variables do not exist.

In Fig. 1, one source of data is shown together with two
drains of data that are connected by a so-called "wire
fork". To be consistent with dataflow, wires use "by-
value" syntax. When a wire forks, its value is duplicated.
On the one hand, duplicating data requires more memory.
On the other hand, the "by-value" syntax implies the
value on each individual wire to be independent from all
other wires. Each wire together with the operations along
that particular wire represents an own thread. By this, the
concept of dataflow implies a natural parallelism and is
inherently thread-safe due to the "by-value" concept.

Concept of LVOOP
Object oriented programming with LabVIEW extends

the concept of "Dataflow" to the concept of "Objectflow"
[1]. A class in LVOOP consists merely of a user defined
data type together with methods that can be applied to
values of that data type. Once could say that LVOOP
allows the developer to create object oriented wires.
Object orientation in LVOOP means the following.

1. Simple Inheritance. Neither multiple inheritance
nor interfaces as in Java.

2. Strict encapsulation. Data of a class are always
private. Public or protected data do not exist.

As in other object oriented languages, a derived class
may overload (naming convention of LVOOP:
"override") an abstract method of its base class. However,
the override method must have exactly the same input and
output parameters as the respective method of the parent
class.

The concept of dataflow requires objects to flow
through their "class wires" from source to drain, like the
flow of data in Fig. 1. This has three fundamental
consequences.

1. Objects contain only data and no active code.
Agents do not exist.

2. LabVIEW does not have classical variables. For
the same reason, LVOOP has no equivalence to the
concept of a constructor and a destructor. There
are neither constructors nor destructors.

3. Objects can only be accessed "by value" and never
"by reference".

The fundamental differences between LVOOP and
conventional object oriented languages prevent a straight-
forward implementation of design patterns that are based
on the idea of objects as entities [2]. However, many of
those design patterns are useful for designing control
systems, and need to be reinvented with respect to the
dataflow paradigm.

DESIGN PATTERNS
Reference Pattern

The same object can not be used by two independent
wires. A wire fork, as shown in Fig. 1, just creates an
identical copy of the object flowing from the source to the
two drains. In order to profit from the inherent parallelism
in LabVIEW, the reference pattern is required.

The reference pattern makes use of one of the event
mechanisms that is part of LabVIEW. A so called
message queue is a shared resource that is identified via a
reference. It provides a buffer allowing a sender to feed
data into the queue from one thread. A receiver waits in a

TPPA01 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Software Technology

84

second thread to obtain data from the same queue. Since
LVOOP objects are only data, they can flow from a
source into the message queue and can be retrieved
somewhere else. This situation is depicted in Fig.
2.

Figure 2: Idea of a referenced object. Top: Insert an
object to a message queue. Bottom: Retrieve an object
from a message queue.

In case there is no second thread retrieving the object
immediately, the object will remain in the queue until it is
retrieved or the program terminates.

 Figure 3: Usage of the reference pattern.

Fig. 3 depicts an example for using a reference class
that is part of the reference pattern. The reference class
provides create, checkout and checkin methods. An object
flows into the create method where a reference object is
created and the object is inserted into a message queue
(see Fig. 2, top). The reference object contains and
protects the reference of the message queue as private
data. The wire fork in Fig. 3 duplicates the reference
object, but not the original object which is in the message
queue. Two identical copies of the reference object are
now used in two threads represented by two loops. Each
time the loop iterates, the respective thread uses the
checkout method and must wait, until the object is
available in the message queue. It performs an action on
the object and re-inserts the object into the queue using
the checkin method. To conclude, the reference pattern
allows using one object in different threads and provides
mutual exclusion.

Factory Pattern
The factory pattern allows for creating and initializing

objects of any class at runtime. An overview on the
factory pattern is depicted in Fig. 4.

Figure 4: Factory pattern.

Shown are three classes, the factory class, an
application specific factory CSOOMMFactory and one
example of a class myClass. For producing objects,
myClass must be derived from the factory class and must
implement the override method initialize. The
CSOOMMfactory class is also derived from the factory
class and need to implement the override method classes
which contains an object constant for each class (here:
myClass) to be produced.

DESIGN STUDY CSOOMM
This design study aims at setting up a simple,

distributed, event-driven and object oriented control
system by combining LVOOP with DIM as
communication layer.

Object Management
LVOOP does not provide an object management.

Within CSOOMM, this is implemented by joining the
reference pattern and the factory pattern. An
objectManager library provides _new and _delete
routines as well as routines to convert an object name into
its reference and vice versa. An example for using the
_new operator is shown in Fig. 5.

Figure 5: Creating a referenced object.

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA TPPA01

Software Technology

85

Connecting to DIM
The dimProcessor class is one of the base classes

within CSOOMM and provides and encapsulates the
interface to DIM [3, 4]. For ease of use, it is restricted to
two data types namely arrays of double values and
strings. The most important features of this class are

1. declaring and publishing DIM services,
2. declaring DIM commands,
3. create a periodic action timer,
4. an abstract method for handling received

commands,
5. an abstract method for handling updated services,

and
6. an abstract method for handling periodic actions.
The abstract methods of the dimProcessor class

correspond to the call-back methods that can be used in
the DIM environment.

Application Example
It is not possible to call LabVIEW code from other

applications directly. Thus, the abstract methods of the
dimProcessor class can not be used for direct call-back by
the shared libraries of DIM. As objects in LVOOP are
passive and provide no active threads, active LabVIEW
code is required as an additional step and must be
provided by the application program.

Figure 6: Example application for handling DIM
commands.

Fig. 6 shows an example application as LabVIEW code
that demonstrates the handling of DIM commands in a
while-loop. The following is shown from left to right.

1. Wait, to receive a DIM command buffer via a
message queue,

2. unpack the command buffer, get the respective
reference object via the object management tools,
unpack the command data,

3. checkout the object,
4. abstract method for handling commands of the

dimProcessor class, this will call the respective
override method of the class of the object, and

5. checkin the object.
Please note, that the checked-out object is typecasted to
an object of the dimProcessor class. Thus, the code is
class independent, as long as the class of the checked-out
object has been derived from the dimProcessor class. The
shown example demonstrates the re-usability and
simplification of code, which results from using abstract
methods provided by LVOOP.

STATUS AND CONCLUSION
A design study has been performed to successfully test

the applicability of LVOOP to designing control systems.
Testing of performance yielded the following results.
Attribute data of classes are always private. However, the
memory management of LVOOP is well done and
accessing those data via class members can be
accomplished quickly, even if the amount of data exceeds
10Mbyte. It is easily possible to instantiate more than
1000 device objects per PC, which corresponds to about
1000 physical devices per PC. When designing a control
system, the use of abstract methods of base classes
simplifies coding and greatly enhances reusability. As the
only draw-back of LVOOP in LabVIEW version 8.20,
there is no code sharing when executing the override
methods to abstract methods. This restricts the usefulness
of LVOOP in multi-threaded applications. However, this
problem seems to be solved with the newer version of
LabVIEW 8.5.

Although this design study demonstrates the usefulness
of LVOOP successfully, this approach must be confirmed
by application to a real control system like, as an
example, the CS-framework [5].

REFERENCES
[1] Tutorium by National Instruments: "LabVIEW

Object-Oriented Programming: The Decisions
Behind the Design".
http://zone.ni.com/devzone/cda/tut/p/id/3574.

[2] E. Gamma et al., Addison-Wesley (1995) ISBN 0-
201-63361-2.

[3] C. Gaspar and M. Dönszelmann, "DIM - A
Distributed Information Management System for the
Delphi experiment at CERN", Proc. IEEE Eight
Conference REAL TIME '93, Vancouver, Canada, 8.-
11. June 1993.

[4] D. Beck et al., "LabVIEW-DIM Interface", Proc.
"Virtuelle Instrumente in der Praxis 2005", VIP 2005,
Fürstenfeldbruck, Germany, Editors R. Jamal and H.
Jaschinski, ISBN 3-7785-2947-1 (2005) 20-26.

[5] D. Beck et al., Nucl. Instrum. Meth. A 527 (2004)
567-579, http://wiki.gsi.de/CSframework .

TPPA01 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Software Technology

86

