
A M QL-BASED DATA ARCHIVER: PRELIMINARY RESULTS*

M. H. Bickley#, C. J. Slominski, Jefferson Lab, Newport News, VA 23606 USA.

Abstract
Following an evaluation of the archival requirements of

the Jefferson Laboratory accelerator’s user community, a
prototyping effort was executed to determine if an
archiver based on MySQL had sufficient functionality to
meet those requirements. This approach was chosen
because an archiver based on a relational database enables
the development effort to focus on data acquisition and
management, letting the database take care of storage,
indexing and data consistency. It was clear from the
prototype effort that there were no performance
impediments to successful implementation of a final
system. With our performance concerns addressed, the lab
undertook the design and development of an operational
system. The system is in its operational testing phase now.
This paper discusses the archiver system requirements,
some of the design choices and their rationale, and
presents the acquisition, storage and retrieval
performance.

ARCHIVER REQUIREMENTS
Development of the MySQL-based archiver started

with an evaluation of the user requirements for the
system. In this context the users of the archiver include
not just control system users, but the maintainers of the
archiving system, computer scientists who write software
to access historical data, and system administrators who
must design and maintain the archiver’s computer systems
as well as back up the archived data. A cross-section of
the lab’s community of these archiver users met and
documented a complete set of archiver requirements. [1]

Some of the requirements spelled out in the document
merit special mention. In addition to the typical
requirements that might be expected with any archiver
(e.g. monitoring and recording all primitive data types and
specification of data retrieval needs) there are some
requirements that focus on the maintainability of the
archiving system for a minimum projected lifetime of 10
years.

One requirement specifies that the archiving engine
itself must be able to perform deadbanding on all scalar
values. Deadbanding enables the archiver to ignore
changes in value that are below some threshold specified
by device experts. Because the archiver executes the
deadbanding it is available for all control system scalars.
EPICS only provides this facility for certain parameters,
and provides no deadbanding ability for the remainder.

Independent deadbanding is beneficial as well because the
tolerances for archived data are not always the same as the
tolerances required for real-time interaction with a control
system.

Another requirement is that the archiving system must
be able to maintain metadata information about each
channel being monitored. A channel’s metadata can be
critical to interpreting the data’s value. An example of this
is the definition of the enumerations associated with an
enumerated type. Without those (potentially changing)
definitions, the meaning behind a particular value at a
specific time may be lost.

Several of the archiver requirements focus on data
handling issues. In order to manage the scope of data
being collected, the archiver must provide facilities for
controlling data retention relevancy and archive request
lifetime. Data retention relevancy refers to a channel’s
storage time period after the data is collected. Rather than
saving all data forever, this feature enables an archival
system to eliminate data once it is no longer relevant. An
example of this is the intermediate values in the
computation associated with a control system device. The
values might be only useful for post-mortem analysis of
faulty device behavior. Therefore the data can be removed
from storage after passage of the period during which
analysis might be performed. In a similar vein, the archive
request lifetime aids in management of the volume of data
stored in the archive system. Because all archive requests
are given a lifetime (which may be infinite for “core”
operational needs), the rate of data collection will not
grow monotonically.

Finally, there are a series of requirements that help
ensure both scalability of the archiving system and
graceful handling of some most-likely failure modes.

The archiving system, a “logical archiver,” must be able
to scale over time, as the demands on the system increase.
This can be addressed by ensuring the logical archiver is
comprised of one or more archiver instances. Each
instance must operate independently, except for a master
instance that has the additional responsibility of tracking
which channels are associated with each instance. Scaling
the system up will require only that an additional instance
be added to the logical archiver. Figure 1 shows a
schematic of a logical archiver.

The archiver has to gracefully handle the two failures
most likely to afflict the system. First, it must deal with
disk overflow. There may be operational periods during
which data is accumulated at a rate higher than expected,
resulting in the system’s hard disks filling before the
problem can be handled by administrators. With the
assumption that old data is not as valuable as recent data,
the archiver should discard the oldest online channel data
in favor of the most recent data. The archiver’s associated
backup system may be used to recover the discarded data
if needed.

* Notice: Authored by Jefferson Science Associates, LLC
under U.S. DOE Contract No. DE-AC05-06OR23177. The
U.S. Government retains a non-exclusive, paid-up,
irrevocable, world-wide license to publish or reproduce this
manuscript for U.S. Government purposes.
Bickley@jlab.org

yS

RPPB32 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Operational Tools

680

Figure 1: A logical archiver

The archiver is also required to handle failures where
the CPU is overloaded. An overload for a sustained time
will eventually result in data loss, but the system should
be designed to prioritize functionality appropriately. In
this context the lowest priority function for an archiver
instance is support for data history requests, with the next-
lowest being data storage. The highest priority of the
archiver is obtaining and queuing control system data, so
support for control system communication and buffering
of data should receive all of the CPU time it needs.

PROTOTYPING STUDY
The Jefferson Lab prototyping effort started with the

premise that we should take advantage of the expertise of
other computer scientists and software engineers as much
as possible. The developers of relational databases
(RDBs) spend a great deal of time providing the
functionality and performance required of their users.
Taking advantage of their expertise enabled us to focus
our efforts on the issues associated with control system
interaction, process tuning and performance management.

We started the study planning to base the data store for
the prototype on the widely-used open-source relational
database MySQL. MySQL was attractive because the lab
has several staff members with years of experience in
using and tuning MySQL databases. With their advice we
believed we would be able to determine the upper limit on
MySQL’s capabilities for this application. We also
considered using the relational database system available
from Oracle because it is used for many solutions at
Jefferson Lab, and its ability to host archiving services has
been demonstrated at other sites [2]. If MySQL proved
incapable of meeting our performance needs, evaluating
Oracle in its place was planned to be our next step.

Prototyping Design
The prototype archiver supported two different database

table designs [3]. One was named a “few-table” design,
with one table for each fundamental data type. The second
design was called the “many-table” design, with a
different database table for each channel. The data storage

requirements of the few-table design are larger than the
many-table design for two reasons. First, the few-table
design has an extra field (specifying a channel identifier)
that is not required in the many-table design. Second, the
few-table design has an index that is much larger because
it uses a two-column key (channel identifier and time)
versus the single column key (time) for the many-table
design.

The prototyping software was a simple multithreaded
application. It had a main thread, used for overall control
purposes, a communication thread which interacted with
the control system, and a variable number of database
threads, each of which supported its own connection to
MySQL and was responsible for database insertions. This
design lent itself to the primary purposes of the
prototyping effort, evaluating the performance of MySQL
and testing different database designs.

Issues Addressed During the Study
The prototyping effort was executed on a Pentium 4-

based computer system with 1 GB of memory running
RedHat Enterprise Linux version 4. One of the first tests
was to see how the system performed when executed with
real-time priority scheduling, rather than the operating
system’s default round-robin scheduling. For this test
there was no interaction with the control system and no
insertion of data into MySQL. The test provided a
measure of the rate at which data could be pushed into the
work queues of each of the database threads. With real-
time threads, the system handled 2,000,000 events per
second, versus 80,000 when using round-robin
scheduling. It was clear that using real-time scheduling
was vital to maximize the capability of the archiver on a
general-purpose workstation.

A collection of tests were used to evaluate the
performance improvement associated with a variety of
database and programming choices. One test used
MySQL prepared statements, precompiled database
requests that execute faster than database requests which
have to be parsed with each execution. Their use resulted
in a 33% increase in throughput. Another test exercised
the insert delayed feature of MySQL, which permits the
database to buffer table insertions. This feature provided
another 33% improvement. Attempting to perform two
insertions for each database access provided a 59%
increase in throughput, but resulted in unbounded
buffering delays and in slower data fetches since
associated time stamps would not necessarily increase
monotonically. The study allowed us to examine the
potential performance gains that could be derived from
the use of a specialized free-list management library
rather than the operating system’s memory management
functions. This provided an improvement of nearly 25%.
The drawback to a scheme like this is that it requires the
allocation of a large block of memory that is then
unavailable for use in the caching of file system I/O.

Archive
Server

Ethernet

History API

Client Application

Control
System

MySQL
server

Control
System

Data

Archive
instance

Data tables

MySQL
Queries

Archive
Server

MySQL
server

Archive
instance

Data tables
w/Master

MySQL
Queries

Control
System

Data

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA RPPB32

Operational Tools

681

Prototyping Results
The prototype study provided some clear results to

guide continued development of a MySQL-based
archiver. For example, the optimal number of database
threads was in the range of 5 to 10. Fewer than 5 resulted
in excessively long work queues for the threads, and the
overhead associated with more than 10 threads became
burdensome to the operating system. The few-table design
enabled data insertion rates that were more than twice the
rate associated with the many-table design. On the other
hand, data retrieval rates were two orders of magnitude
slower with the few-table design. Another drawback of
the few-table design was that the associated file sizes
were so large that their management might prove to be
problematic in an operational system.

It was clear at the completion of the study that it would
be possible to meet the Jefferson Lab archiving
requirements using a MySQL database as the data store.
A system based on a design like the many-table prototype
would be able to meet the lab’s immediate needs, and
would require an estimated three Intel dual-core systems
in order to meet the lab’s needs.

DETAILED DESIGN
With the viability of a MySQL-based archiver

established, we developed a detailed design [4]. Named
MYA (for MySQL Archiver) the product of this design
incorporated much of what was learned from the
prototype study.

The process of developing the detailed design included
additional testing and analysis as MYA’s hardware and
software needs were clarified. One component of this
phase of analysis included evaluation of the efficacy of
multiple processors on the archiving engine. This turned
out to be a very fruitful area of performance improvement.
The multi-threaded nature of the engine, with independent
threads managing data insertion for their own database
tables, led to significant performance boosts on systems
with both multiple processors as well as multiple cores in
each processor. Given sufficient I/O throughput that the
performance bottleneck of the system was CPU loading,
scaling the number of processors produced a near-linear
improvement in performance. Multiprocessing also made
it feasible to increase the number of database threads,
enabling the system to handle more data without
increasing the workload per thread. The benefits of
hosting MYA on a multiprocessor system, on top of the
database optimizations, made it realistic to meet the
archiving needs of the Jefferson Lab accelerator using a
single system, rather than requiring three as were
estimated in the prototyping phase.

An area that was carefully examined during the detailed
design was the latency of archived data. This is the time
delay between the time of a channel value change and
when it is available from the archiver. The length of the
delay is driven by the queue size, the amount of data
queued up for insertion into the database. As MYA gets
more heavily loaded (by bursts of data from the control

system, for example, or a large volume of requests for
history data) the queue size, and therefore data latency,
increases. Supporting the work load expected from the
Jefferson Lab control system, the maximum latency
measured was 23 seconds. On average, however, the
latency should be well under 1 second.

One feature of MYA bears special mention. In order to
maximize the volume of data stored by the system it uses
the 32-bit UNIX time. These values are only valid until
January 19, 2038. If the system continues to be in use as
that date approaches, a significant maintenance effort will
be required in order to ensure that the software remains
usable and the data accessible.

CONCLUSION
Jefferson Lab’s operational experience with this

archiver has proven very positive. We purchased a robust
machine to host the archiver. The system hardware
consists of a Dell PowerEdge 2850 rack-mounted
computer, an EonStore RAID disk enclosure and 16
300GB SCSI disk drives that provide a total of 2 TB of
storage. The computer has dual quad-core CPUs, to take
maximum advantage of the threaded design of the
archiver. It has 16 GB of memory, ensuring that all data
structures can reside in memory and still retain a large
amount of memory for caching of disk I/O. The disk
drives on which the data is stored use RAID 0+1, so that
all of the data is striped (improving performance) and
mirrored (to provide some protection against disk
failures). Configured like this, a single system has been
sufficient to support all of the operational archive needs of
the Jefferson Laboratory accelerator for the last 8 months.
It can process channel updates at a rate of more than
50,000 per second, deadband the data and perform more
than 30,000 database insertions per second while
simultaneously exporting data events to history data
clients at rates up to 200,000 events per second.

MYA has been running in parallel with the lab’s
existing archiver for more than 8 months. This has
enabled us to work on developing improved client tools
while we verify MYA’s performance and capabilities.
Running the archiver in parallel also enables us to
accumulate a large set of data that will be available to
users once MYA becomes the operational archiver for
Jefferson Laboratory.

REFERENCES
[1] C. Slominski “EPICS Channel Archive Facility

Software Requirements Specification” JLAB-TN-07-
063

[2] M. Clausen et al. “COSMIC – The SLAC COntrol
System MIgration Challenge” Proc. ICALEPCS
2001, San Jose

[3] C. Slominski “Archiving Directly into a Database”
JLAB-TN-07-065

[4] C. Slominski “EPICS Channel Archive Facility:
Design Specification” JLAB-TN-07-064

RPPB32 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Operational Tools

682

