
A GRAPHICAL SEQUENCER FOR SOLEIL BEAMLINE ACQUISITIONS

Gwenaëlle Abeillé, Majid Ounsy, Alain Buteau
1Synchrotron SOLEIL, Saint Aubin, France, http://www.synchrotron-soleil.fr

Abstract
 Addressing batch-processing and sequencing needs are

fundamental for daily beamline operation. The SOLEIL
[1] control software group proposes two solutions.

Firstly, the PYTHON [2] scripting environment, for
which a dedicated TANGO [3] binding is available, has
been proven to be a powerful resource, but is limited to
scientists with good programming skills.

Secondly, we provide the PASSERELLE software,
developed by the ISENCIA [4] company and based on the
PTOLEMY [5] framework. Within this environment,
sequences can be designed graphically by drag and drop
components called actors (representing elementary
sequences steps). The process execution can be easily
“programmed” by graphically defining the data flow
between actors. On top of this framework, an existing
generic GUI application allows users to configure and
execute the sequences. A dedicated GUI application can
also be developed to provide the beamline’s end-user a
completely integrated acquisition application.

The work organization, software architecture, and the
design of the whole system is presented, as well as its
current status of deployment on SOLEIL beamlines.

THE CONTEXT
The SOLEIL light source is a new low emittance 2.75

GeV electron storage ring which was commissioned in
2006 at Saint-Aubin near Saclay, not far from Paris
(France). This facility provides high-intensity photons
covering a wide spectral range from ultraviolet light (UV)
to hard X-rays. SOLEIL will serve an international
community of scientists from many fields including
physics, materials science, chemistry, and biology. Ten
beamlines are being commissioned and will start regular
user operation by the end of 2007.

Under normal operations, external users will be on site
from 8 hours to several days to perform data acquisitions
to provide structural information concerning their
samples. Upon arrival, most users will have no
knowledge of the beamline and its control system. Thus
the challenge is to provide them a software tool:

- for performing acquisition sequences in a simple
and flexible way,

- that conceals the complexity of the beamline and
its control system,

- that helps beamline automated alignment to
shorten the beam reconfiguration between
successive experiments,

- that guarantees “high availability” since no beam
time should be lost because of software
problems.

To summarize, have only to click a “Start Acquisition”
button to collect data.

OUR VISION

Intrinsic Problems of Scripts
Using scripting languages is the common way in

Synchrotron facilities to address all previously evoked
needs, but in reality has a number of severe limitations.

First, users have to learn a script language which can be
quite painful if they are not software developers. Since
users stay only a short time on a beamline, it is impossible
to relearn a new language each time they go to another
Synchrotron. Some collaborative work on “scripting
language homogenization” has been occasionally tried by
various institutes. Unfortunately, the same language does
not always translate into the same commands behaving in
a standardized way across sites. For instance behind a
single command line like “scan 100 200 1” that launches
a script (or several), many different behaviours may arise
depending on the underlying Control System, equipments,
execution context, etc ..

Moreover each time this script(s) is changed by
someone (i.e. to add a new functionality) the command
line behaviour is potentially and often inevitably altered.
This apparent flexibility quickly raises stability problems.
What was working before the modification may fail
during command execution. Precious resources are thus
dedicated only to keeping the control system in a stable
state.

Another limitation of scripting languages is that it is
quite difficult to follow what the script is currently doing
or what has been done in a previous execution. It is also
impossible to remotely perform batch-processing
administration.

Last but not least, scripting languages do not natively
provide services for: logging, execution simulation
modes, error management, and context checking. Users
have to handle these tasks by hand, generally waiting for
their scripts to complete execution and checking if
anything is wrong with their collected data.

This model of operation maximizes the risk of lost
beam time.

Our Philosophy: Leave Scripts in Experts Hands
and Only for Limited Applications

Script languages are nevertheless used at SOLEIL. For
instance, the TANGO Python binding is widely used by
the software team to carry out unit and regression tests. It
is also used on two beamlines for commissioning
applications. In both cases, the individuals using these
Python scripts have good programming skills, skills
which are not available within each beamline team. Using
python at SOLEIL over the past six months has
demonstrated that it was not manageable to use it as an

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA RPPB20

Operational Tools

647

integrated environment for hosting beamline operation by
external users.

Keeping in mind these intrinsic limitations, we studied
the market to find a ready-to-use product that could meet
our requirements: flexibility, robustness and GUI
integration for the development of acquisition sequences.
This led us to the PASSERELLE framework from
ISENCIA company.

PASSERELLE OVERVIEW
Passerelle is a toolkit for designing sequences (and

more generally data workflows) in a “drag and drop”
graphical environment. Its core functionalities are based
on the Java technology standards.

To design/develop/program sequences, called models,
ISencia provides a graphical IDE (Integrated
Development Environment) (see Fig. 1). The IDE offers
an execution engine as well as and a number of essential
framework services which will be described bellow.

Figure 1: The Passerelle IDE

Using Passerelle graphical IDE, a given process can be
easily mapped from its functional design onto a graphical
model of inter-connected components. The solution
model can be gradually refined, starting from high-level
composite components, to define how each composite
component can be assembled from more elementary
building blocks. Models can be immediately tested inside
the Passerelle IDE, after which they can be directly
deployed to the Passerelle model executors.

Passerelle: he sics
Within Passerelle, the user designs models that are

composed of “boxes” and “wires”. The boxes are called
“Actors”, and they execute an action. The wires are called
“Messages”, as they transfer data between actors. The fig.
2 is a very simple model that calculates the sine function
of a value and writes the result to a file.

Figure 2: A very simple sequence.

Each actor can be configured with some “Parameters”.
Fig.3 shows the “value” parameter of the “Constant” actor
that acts as an input generator for other actors.

Figure 3: Example of an Actor’s Parameter.

Each Passerelle model must be populated with one
instance of a special actor called the model Director. The
Director handles communication and data transfer
between all the other actors. Different types of Directors
exist to implement different strategies of communication
(e.g. synchronous flow, asynchronous queues,
rendezvous...).

The user can also define its own actors inside the
Passerelle IDE with a Composite Actor (see Fig. 4) which
is a composition of several basic actors.

Figure 4: Composite actor

The Execution Control
After developing a model, the user is able to test it in

the stepwise execution mode.
A very useful execution environment is the simulated

mode. Each actor can be executed live, to control the
beamline or in simulation, to check or test a model.

A Passerelle model is able to natively manage errors.
The user has just to choose among a predefined set of
error strategies:

- Abort on error,
- Pass the failed step,
- Retry n times the failed step.

A context validation service is integrated. This gives
the ability to check at each step of execution if some
critical conditions are verified; is the beam still present?
Is the source power not too low? The user can then decide
which action to take: Continue? Stop? Pause?

The Execution Environments
A Passerelle model can be used in various execution

engines. The first one, the Passerelle's IDE, supports the
design, definition and testing of new solution assemblies.
It provides a sophisticated graphical model editor,
including the means to pick actors from the library, to
interconnect them in an assembly and to configure them.
The embedded executor ensures an easy iterative work-
flow to define, test and refine solution assembly models.

Another Passerelle execution environment is provided
by a GUI (Graphical User Interface) called PasserelleHMI
(see Fig. 5). This GUI is able to display a panel on top of
any model, giving access to all its configurable
parameters.

Figure 5: Passerelle HMI.

Look inside

T Ba

RPPB20 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Operational Tools

648

Run-Time Administration
Passerelle also offers an administration console to

manage its execution environment. Passerelle's executor
management is based on the standard for Java application
and component management JMX (Java Management
Extensions) [6]. The console is delivered as a browser-
based application, implemented on an embedded Java
web application server. Thus a Passerelle runtime
environment can be easily managed remotely using a
standard browser.

Passerelle Integration with our Control System
The Soleil software team has developed a library of

actors that are able to communicate with the control
system. This library contains actors which abstract all the
complexity of the different controlled systems within
sequences. For instance, for a complex system like a
monochromator (used to configure the energy of the
beamline and composed of at least 6 motors) a simple
actor with only one parameter, the desired energy, has
been developed. All the processes of configuration
including the waiting for the end of movements and the
error management are hidden. Actors for acquisition
processes such as scans, detector acquisition… have also
been developed.

PASSERELLE STATUS AT SOLEIL

Current Deployment
Of the first ten beamlines of SOLEIL, eight are

currently under commissioning. One beamline is not yet
started. Five beamlines are still doing unitary tests of their
equipments. Four are beginning to automate some
alignment and acquisition and three are using
PASSERELLE.

Acquisition Sequences Already Developed
Below is an example of a sequence to perform a scan in

fluorescence (see Fig. 6). In this sequence, the beamline is
first configured (monochromator and detector) then a scan
is performed. Finally the result of the scan is used to
calculate the energy inflexion point of the sample.

Figure 6: A Soleil sequence.

Higher Level of Integration
We also provide GUI upon Passerelle models because

the generic GUI’s ergonomics is not always sufficient for
the end user. Figure 7 show the panel that configure the
model presented in Figure 6.

Figure 7: A passerelle GUI for energy scan.

FUTURE OF PASSERELLE AT SOLEIL
For the moment, Passerelle is only used on the

beamlines. There are, however, plans to install it also on
the accelerators’ control system to automate the process of
start-up and injection which today are handled manually
by the operators.

For the moment the PasserelleHMI is quite basic and
the configuration for display of information is quite poor.
We provide on-demand specific GUI application on top of
specific Passerelle models (programmed in Java).
However, the best way should be that the designer of the
Passerelle model is also the designer of the GUI. A project
is under way to provide such a tool.

The ultimate goal of Passerelle is to be able to automate
as much as possible, to achieve a state where all the
beamlines could be pre-positioned for specific
experiments and the experiments themselves are done
automatically. Passerelle will also be connected with
online data-analysis systems to do decision-making on the
acquisition process.

REFERENCES
[1] http://www.synchrotron-

soleil.fr/portal/page/portal/Accueil
[2] http://www.tango-controls.org/bindings
[3] http://www.tango-controls.org/
[4]

http://www.isencia.be/content/products/products.html
?content=more-passerelle.html

[5] http://ptolemy.eecs.berkeley.edu/ptolemyII/index.htm
[6] http://java.sun.com/javase/technologies/core/mntr-

mgmt/javamanagement/

Configuration

Acquisition

Calculation

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA RPPB20

Operational Tools

649

