
DEVICE CONTROL TOOL FOR CEBAF BEAM DIAGNOSTICS
SOFTWARE*

P. Chevtsov, Jefferson Lab, Newport News, VA 23606, USA

Abstract
Continuously monitoring the beam quality in the CEBAF
accelerator, a variety of beam diagnostics software created
at Jefferson Lab makes a significant contribution to very
high availability of the machine for nuclear physics
experiments. The interface between this software and
beam instrumentation hardware components is provided
by a device control tool, which is optimized for beam
diagnostics tasks. As a part of the device/driver
development framework at Jefferson Lab, this tool is very
easy to support and extend to integrate new beam
instrumentation components. All device control functions
are based on the configuration (ASCII text) files that
completely define the used hardware interface standards
(CAMAC, VME, RS-232, GPIB, etc.) and
communication protocols. The paper presents the main
elements of the device control tool for beam diagnostics
software at Jefferson Lab.

INTRODUCTION
 The CEBAF accelerator provides nuclear physics
experiments at Jefferson Lab with high quality electron
beams. High quality of beams means not only their
excellent (more than 80%) polarization factor and precise
position and shape on targets, but also an outstanding
relative energy spread, which is as small as twenty parts
in one million. The smaller the beam energy spread the
better the resolution of nuclear physics experiments, and
physicists can see more details inside nuclei.
 CEBAF beam quality is continuously monitored by an
advanced beam diagnostics system. The system includes
such popular beam diagnostics devices as wire scanners,
beam viewers, optical transition radiation (OTR)
monitors, synchrotron light monitors (SLM) and
interferometers (SLI) as well as a variety of software
dealing with the main functions of these devices and their
data analysis. The software is based on a device control
tool that was designed and created at Jefferson Lab as a
part of the device/driver development framework.

DEVICE CONTROL TOOL AND ITS BASIC
COMPONENTS

The device control at Jefferson Lab is based on the
EPICS toolkit [1], which allows easy system extensions at
all control levels. To interface with control devices, the
elements of a distributed real-time EPICS database or
EPICS records need to know the device communication

protocols and must be equipped with device/driver
support software. All this can easily be provided on the
basis of the device/driver framework that has been created
at Jefferson Lab. The main idea of the framework is to
make the device control a relatively simple task even for
non-specialists in accelerator control software. Based on
this idea, the device/driver support software for beam
diagnostics applications at Jefferson Lab was written to be
responsible for all essential control functions for beam
diagnostics devices as well as very efficient mechanisms
for troubleshooting of any possible problems with these
devices during accelerator runs. The software makes up a
powerful device control tool consisting of the next key
components: a Device Communication Hardware
Handler, a Serial Port Handler, a Device Support
Database Handler, and a Device Control and Data
Processing Support Module (Fig.1).

Figure 1. Main components of the Device Control Tool.

Device Communication Hardware Handler
The Device Communication Hardware Handler

registers hardware components used by a control
computer (IOC) to communicate with control devices.
The Handler is based on CAMAC, IndustryPack (IPAC or
IP), Common Serial, and GPIB support libraries created at
Jefferson Lab [2-4]. Hardware is registered with the use
of a very limited number of library calls, the most
important of which deals with the type of the hardware:

stat=initDeviceHw(HWTYP, PARAM_STR) (1)

Here stat is the registration status (traditionally, the status
is equal to 0 if everything is OK and contains an error
code in case of a failure), HWTYP is the device hardware
type, and PARAM_STR is a string consisting hardware
specific initialization parameters.
 If HWTYP is VME or CAMAC then the hardware does
not require other registration calls but the PARAM_STR
must contain the information about a used VME board
(such as HYTEC VSD 2992 CAMAC serial highway
driver card or Maxvideo 200 image processor, for

-

*Notice: Authored by Jefferson Science Associates, LLC under U.S.
DOE Contract No. DE-AC05-06OR23177. The U.S. Government
retains a non-exclusive, paid-up, irrevocable, world-wide license to
publish or reproduce this manuscript for U.S. Government purposes.

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA RPPB06

Operational Tools

615

example), its I/O base addresses (A16, A24, A32), and an
interrupt number (or interrupt numbers), if applicable.
 When HWTYP is IPAC, then the PARAM_STRING must
provide the information about a used carrier board
(SYSTRAN, TVME200, VIPC616, etc.) type and its I/O
base addresses as well as assign to this board its number
(CBN) in the system. At that all IP modules used on slots
available on this board require one additional registration
call:

stat=initIPslot(CBN, SLN, PAR_STR), (2)

where stat is the module registration status, CBN is a
carrier board number, SLN is a slot number on this carrier
board, the PAR_STR is a string with information about the
module type (GPIB, IP-OCTAL232, IP-OCTAL485, etc.)
and an interrupt number used by this module, if
applicable.
 When hardware is registered, the Device
Communication Hardware Handler software makes
several checks to make sure that specified cards are
installed in a VME crate or on an IP carrier board as well
as have valid manufacturer and model IDs.

Serial Port Handler
 If an IP serial control module is installed in one of the
slots on an IP carrier board, it can usually be used to talk
with several serial devices connected to its data
communication ports. For example, eight serial devices
can be connected to each IP-OCTAL232 module. Serial
ports available for device controls are registered by the
Serial Port Handler software with the use of the next
library call:

stat=initSerialPort(CBN, SLN, PN, P_STR) (3)

Here stat is the port registration status, CBN and SLN are
carrier and slot numbers, PN is the port number, P_STR is
a string that defines basic serial communication
parameters, such as the baud rate, number of stop bits,
data word size, parity, and so on.

Device Support Database Handler
 The Device Support Database Handler registers
device communication protocols. For example, in case of
GPIB or serial devices, each device protocol fragment
consists of a sequence of input and output commands with
or without data as well as some additional parameters
affecting data transfer, such as separators, terminators,
timeouts, etc. Protocol fragments have their names,
which are usually associated with particular device
actions (such as enable, start, stop, etc). For each device
type, all protocol fragments are combined in one device
protocol file. All device protocol files reside in one
“special” directory (~iocs/DATA/deviceProtocols) in the
control computer file system. The protocol file name, the
protocol fragment name, and the information about the
data communication channel (carrier board number, slot
number, and serial port number or GPIB address) are

referenced by INP and OUT fields of EPICS database
records.
 When an EPICS database is loaded on the IOC, the
Device Support Database Handler parses protocol files
referenced by records, defines the structure of all device
control data streams and make them a part of the standard
EPICS device/driver support.

Device Control and Data Processing Support
Module

The Device Control and Data Processing Support
Module consists of a set of device data processing,
diagnostics, and service executable utilities and scripts.
For each IOC and for each particular type of the used
device control hardware, device hardware registration
calls mentioned above are combined into one device
configuration file. All these files are located in a second
“special” directory (~iocs/DATA/devCommHw) in the
control computer file system at Jefferson Lab. When the
device support software is loaded on the IOC, service
scripts read all device configuration files existing for this
IOC and make registration calls (1)-(3) for required data
communication channels.
 Very important functions for accelerator operations are
provided by Device Control and Data Processing Support
Module software with respect to wire scanner controls
and beam image processing systems.
 Images from dozens of beam viewers in the CEBAF
accelerator are captured by TV cameras and displayed in
the machine control room on the main control display
wall as well as on numerous TV screens all over Jefferson
Lab. The TV signals are also fed into pipelined high
performance image processing systems Maxvideo 200.
The main advantage of the pipeline technology is that the
pixel manipulation can be done while the image is being
digitized and directed to the image memory. As a result
basic image processing operations can be implemented at
the full 30 Hz frame rate of the standard NTSC video
signal. To calculate the size of the beam from its viewer
image, Maxvideo software needs to know such important
parameters as pixel spacing in physical units (for
example, mm per pixel), a region of interest to mask
pixels outside it, an image acquire gain, etc. For each
viewer, these parameters are determined during a standard
viewer calibration procedure and are placed in a viewer
calibration file. All these files reside in another “special”
directory (~iocs/DATA/calibViewers) in the control
computer system. When Maxvideo 200 begins processing
images from a particular beam viewer, Device Control
and Data Processing Support Module software reads the
calibration file for this beam viewer and enters this
information into a control system database, which makes
it available for any application running on the accelerator
control computer network.

The most popular beam profile measurement devices at
accelerator facilities are wire scanners (WS). The idea of
WS is transparent. A stepper motor moves thin wires
through the beam. The amount of beam particles
intercepting a wire changes depending on the beam

RPPB06 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Operational Tools

616

profile. The advanced wire scanner control software
created at Jefferson Lab integrated WS implemented in
different hardware standards (CAMAC and VME) into
one homogeneous system that is very easy to use and
support for accelerator operations [3]. The Device Control
and Data Processing Support Module software has added
more functionality to this system by implementing a semi-
automatic WS mode. In this mode, the wires can be
moved continuously back and force between any two
specified points in the beam pipe, with different velocities
and acceleration. The software collects the information
about beam profiles and settings of upstream magnets,
which can immediately be used, for example, for beam
emittance calculations.

The Device Control and Data Processing Support
Module software also provides powerful mechanisms for
troubleshooting of any problems with beam diagnostics
devices in operations. For each registered device
communication channel (serial port, GPIB address, etc.) it
spawns a task monitoring data streams flowing through
this channel. In case of any troubles with the data flow,
the software analyzes the situation and generates EPICS
alarms associated with the device failure sources (such as
a serial CAMAC highway collapsed loop, a wire scanner
stepper motor power supply failure, problems with video
signals for Maxvideo systems, etc.). The EPICS Alarm
Handler catches these alarms and provides accelerator
operators and beam diagnostics specialists with standard
Display Guidances [5] that explain in detail what should
be done to solve device communication problems.

DEVICE CONTROL TOOL AT WORK
Above we have presented the basic elements of the

Device Control Tool at Jefferson Lab. With the use of this
Tool, the device control does not require any software
coding for connecting a new device to the control system
and is based on configuration (ASCII text) files, which
define device communication hardware and protocols. We
note that the main documentation web page of the
controls software group at Jefferson Lab has detailed
information about the Device Control Tool and numerous
examples how to use it.

In particular, if we have, for instance, a serial (RS-232)
device with the name controlDEV and want to connect it
to one of the ports of an IP-octal232 module sitting on a
TMS200 carrier board and control this device from the
control computer with the name iocABC, then we must
perform the following steps.
 a) Log on any control software development computer,
go to the directory ~iocs/DATA/devCommHw, and add
the information (if it doesn’t exist already) about the used
carrier board, slot, module and parameters of the serial
port to the device configuration file with the name
iocABC.hw in the form of the standard Tool library calls
(1)-(3).
 b) Go to the directory ~iocs/DATA/deviceProtocols
and create a file with the name controlDEV (if it doesn’t

exist already there) consisting all fragments of the device
communication protocol.

c) Create a new EPICS database handling this serial
device.

d) Go to the directory ~iocs/iocABC and add the
information about a new control device to the startup.all
file.

e) Connect the device to the serial port with a proper
cable.

d) Reboot the iocABC computer to activate the new
device communication channel.

When the IOC is rebooted, the Device Control and Data
Processing Support Module software reads the device
configuration file located in the directory
~iocs/DATA/devCommHw and activates the device
communication serial port. The Device Support Database
Handler examines the EPICS database associated with the
device, reads the device protocol file in the directory
~iocs/DATA/deviceProtocols and adjusts the Serial Port
Handler software to deal with all device control data
streams. At this point, serial port control (which is a part
of the Serial Port Handler) and monitoring (that is
provided by the Device Control and Data Processing
Support Module) tasks are spawned and take control on
the device.

CONCLUSIONS
The Device Control Tool has been in operations at

Jefferson Lab for the last few years. Almost all control
and image processing software for CEBAF beam
diagnostics applications is based on this Tool. The
software is extremely reliable and very easy to use,
support, and extend to integrate new beam
instrumentation components.

ACKNOWLEDGMENTS
 The author would like to thank M. Bickley, A. Hutton,
and K. White for their support of this work.

REFERENCES
[1] B. Dalesio et al., “The Experimental Physics and

Industrial Control System Architecture: past, present
and future”, NIM, A 352 (1994), p. 179-184.

[2] P. Chevtsov, S. Schaffner, “Information-Control
 Software for Handling Serial Devices in an EPICS
 Environment”, ICALEPCS-2001, San-Jose, CA,
 USA, 2001.
[3] P. Chevtsov, “New Control Software for CEBAF
 Wire Scanners”, ICALEPCS-2003, Gyeongju,
 Korea, 2003.
[4] M. Bickley, P. Chevtsov, T. Larrieu, “Device
 Configuration Handler for Accelerator Control
 Applications at Jefferson Lab”, ICALEPCS-2003,
 Gyeongju, Korea, 2003.
[5] J. Anderson, “Alarm Handler User’s Guide”,
 www.aps.anl.gov/epics/extensions/alh/index.php

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA RPPB06

Operational Tools

617

