
APPLYING AGILE PROJECT MANAGEMENT FOR ACCELERATOR
CONTROLS SOFTWARE

W. Sliwinski, N. Stapley, CERN, Geneva, Switzerland

Abstract

Developing accelerator controls software is a
challenging task requiring not only a thorough knowledge
of the different aspects of particle accelerator operations,
but also application of good development practices and
robust project management tools. Thus, there was a
demand for a complete environment for both developing
and deploying accelerator controls software, as well as the
tools to manage the projects. As an outcome, a versatile
development process was formulated, covering the
controls software life cycle from the inception phase up to
the release and deployment of the deliverables. In
addition, a development environment was created
providing management tools that: standardize the
common infrastructure for all the concerned projects; help
to organize work within project teams; ease the process of
versioning and releasing; and provide an easy integration
of the test procedures and quality assurance reports.
Change management and issue tracking are integrated
with the development process and supported by the
dedicated tools. This approach was successfully applied
for all the new controls software for LEIR, SPS, LHC,
injection lines and CNGS extraction.

INTRODUCTION
The Controls Group, in the Accelerators and Beams

Department (AB-CO) at CERN, is responsible for the
controls infrastructure of all the accelerators at CERN and
it provides core systems for accelerator operations, e.g.:
central timing, front-end systems, equipment settings
management, software interlocks and machine protection,
alarms, logging services, sequencer for hardware
commissioning, access control, among others.
Development of the core systems can not be done in
separation and a unified infrastructure is necessary in
order to streamline all the efforts and to promote reuse of
the common components. Therefore a common
development environment was established for software
development particularly in the Java programming
language, aimed at providing all the necessary services
for the controls community.

ABOUT THE DEVELOPMENT PROCESS

Controls Community
Users of the controls infrastructure comprise not only

of the members of AB-CO group but also operators in the
CERN Control Centre (CCC) [1], physicists and
equipment experts. Since operators are domain specialists
they often provide user requirements for the control
systems. On the other hand, experienced software

engineers, who are members of AB-CO group, develop
frameworks, core components and complete systems.
Thus, the users’ community is diverse, the level of
proficiency in programming varies and many people
within it work on temporary basis (such as project
associates, fellows and technical students) for the Large
Hadron Collider (LHC) start up.

Requirements of the Process
Taking into account the needs of the controls

community and the specific nature of the controls domain,
a list of requirements can be formulated which
characterize the properties of the anticipated development
process:

• Maximise ease of use by providing a quick
comprehension time (particularly significant for
temporary members).

• Standardize development environment (source
repository; projects’ structure; management of
dependencies and 3rd party libraries; build, release
and deployment management).

• Automate repetitive tasks (build and release
management; running of code coverage and test
suites).

• Encourage high quality (code quality; design and
code reviews; documentation; test suites).

• Provide complete software configuration
management solution (code identification;
configuration control; components’ consistency
review; build management; defect tracking).

• Ensure reproduction of the same artefacts at any time
in the future.

• Provide obvious value so teams easily realize its
benefits.

Agile Practices for Controls
When developing controls systems at CERN, there is a

significant dependence on face-to-face communication
with the operators, nearby in the CCC. The work is
distributed among several small teams (between 2 and 5
people) often composed of co-located staff and
temporary members.

Each team is assigned to one or more projects which
are managed by a project leader, who is an experienced
software engineer and maintains close collaboration with
operators, who provide requirements and domain
expertise. User requirements can often change and the
resulting features are needed quickly, which in turn leads
to the necessity of frequent product releases. Operators
are open to test the new releases especially if they know

RPPB05 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Engineering Processes, Project Management Collaboration

612

that their new features are available, thus enabling further
feedback for following versions.

Having gained operational experience in the controls
domain and having tried several available approaches to
project management in the past, including Rational
Unified Process (RUP) [2], the agile approach appears to
be very promising in assisting teams in developing
software in the manner mentioned above. It was perceived
that agile methods provide the most benefits for our
environment, avoiding the overhead related to heavy-
weight processes, where software releases are performed
only when significant amount of changes or new features
are implemented. Agile practices are not in fact a
traditional methodology – it is a collection of guidelines
and conventions based on experience, knowledge and
tools. Moreover, the approach is based on reflection and
continuous improvement of the current environment,
responding to changes in technology, development best
practices and user requests. Users are not constrained by
the process but instead can concentrate more on the
development related to their domain.

A complete environment for Java development was
provided and only standard Java community tools were
used if possible. However in order to address some
specific requirements of the controls community two
custom solutions were developed: Common Build (build
system) and Release (release and version management
system) [3] tools.

DEVELOPMENT TOOLS
What follows is an overview of the tools, which grew

over the time and they were setup in order to help manage
the development. Some of the mentioned tools we are still
learning how to exploit fully; others are quite mature in
their use.

Versioned Source Repository
All software products are stored in a dedicated

repository for accelerator controls software in the CERN
central Concurrent Versions System (CVS) [4]. Each
product has a well defined directory structure following
naming conventions which reflect part of the domain that
this product is responsible for.

Common Build
Common Build is a build system, based on Apache Ant

[5], providing the common tasks required for
development. When the work on new CERN controls
system began in 2002, there was a need for a build tool
which would help to set up an easy and uniform process
that could be applied to new Java development. Due to
the lack of a mature build tool available at that time, it
was decided to create a custom solution based on standard
tools. Common Build provides the following set of
common tasks: dependencies management including 3rd
party libraries; compilation and packaging; unit testing

with JUnit [6]; code quality inspection (using the PMD
[7] tool); code coverage reports (using Cenqua Clover
[8]); source code and documentation generation;
integration with the release system. All products must
follow the same directory structure and use common
configuration files, thus for the developer, the effort
required when working with a project is greatly
minimized.

Release
The release process is handled by a separate tool –

Release, which is also based on Apache Ant and supports
Java, C and C++. The main responsibilities of the Release
tool include: ensuring completeness and consistency
among components; managing the build process and tools
used for builds; ensuring adherence to the organization's
development process; managing the software distribution
repository; making sure every defect has traceability back
to the source. Release tool is composed of a client and
server, where the client is fully integrated with the
Common Build, but it can be also used standalone. The
Release tool extracts product sources from the CVS to a
new version directory in the distribution repository and
builds the product by calling build tool (e.g. Common
Build for Java applications). Subsequently, the new
version is installed in a multi-versioned repository
without modifying any previous versions.

Continuous Integration
Projects are increasingly leveraging code from other

projects. As these "common components" are maintained,
any update must be tested with all its dependent projects.
A Continuous Integration (CI) server was introduced to
automate this increasingly time-consuming task. Using
web-based Atlassian Bamboo [9] tool, projects can be
marked as dependents of a component whereby they are
re-built and their test suite re-run for verification. This
minimizes the risk of compatibility problems after a new
version is released and reduced the time spent by
developers on this task.

The CI server also produces reports based on a project's
tests, code coverage, code metrics and inspection. This
provides an open account of the health of a project’s code
base, highlighting areas for improvement. More recently,
the acceptance level of unit tests or of some agreed code
metric rules (for example, each class file must have at
least one comment) can be set. In the future, a project will
be considered complete, not only when it provides all the
required artefacts, but also when it meets the quality
standards.

Issue Tracking
According to the “lean” side of Agile, work waiting to

be done should be kept to a minimum. Task switching and
keeping work “in process” is a “waste”. Ideally, the list of
bugs and feature requests waiting for completion should
be limited. Nevertheless users and developers still need a

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA RPPB05

Engineering Processes, Project Management Collaboration

613

tool to hold their bug reports, feature requests, and project
to-do lists, and for this Atlassian Jira [10] is used. Projects
can have a large number of stakeholders, so the web
interface enables transparency between them showing
what work done, work ongoing, work planned and
priorities.

Wikis for Collaborative Online Documentation
Project documentation was traditionally created as

HTML. Using a wiki has made it easier to create and
update reference manuals and user tutorials, with the
ability to version pages and easily link between them.
Users are also encouraged to participate and add
comments to share their experiences or improve the
original material. One lesson learned is that, for high
quality information, it is still necessary to have a process
for reviewing information regularly with a vision of the
site content and structure.

Source Code Searching and Inspection
Open inspection and searching of code within CVS is

not easy to do with a large code base, which should be a
valuable team resource. Although tools like ViewVC [11]
are available, the information provided is very limited.
Cenqua Fisheye [12], a code repository search tool, has
proven to be very useful in this area. Developers can track
changes as change sets, search code for duplication, or
find how others have tackled a similar problem or used a
certain library.

APPLYING THE PROCESS TO PROJECTS
Two example projects which employ an agile

development process are LSA [13] and LASER [14].
The LHC Alarm Service (LASER) is an alarm and

notification system. It has to be flexible due to its’ large
number of disparate users including LHC and the whole
accelerator chain as well as the technical infrastructure.

The LHC Software Architecture (LSA) project provides
homogenous application software to operate the
accelerators. It was already successfully used from 2005
onwards to operate the Low Energy Ion Ring (LEIR),
SPS and its transfer lines, and LHC, replacing the existing
old software.

Both projects tried and benefited from a number of
agile practices. They produced a simple, limited feature,
working version early on and extended it incrementally.
Developers on the projects work within the same room or
corridor to lower the barrier of communication. They aim
to integrate features into production frequently rather than
have multi-featured long-awaited releases. This is

particularly important for system stability as it is easier to
test and release many smaller versions with relatively few
changes, than a major one.
The provided tools are used for everyday development
and project management – an interesting example of this
is for new feature requests. These are tracked in Jira and
presented at planning meetings so users can decide on,
and prioritises the backlog list. It is then obvious to all
concerned what is to be worked on for the next iteration.

CONCLUSION
In general, agile practices have improved project

development in AB-CO group. As a part of this overall
environment, the tools mentioned above have helped to
reduce development time and organise work in the
projects in a standard manner. Some agile elements were
found to be in place already such as good communication
between development teams and operators. Other
elements like continuous improvement still require further
refinement. Finally, core tools like Common Build and
Release are already acknowledged to be indispensable
and are heavily used by all the projects.

REFERENCES
[1] D. Manglunki and P. Charrue, “The CERN Control

Centre: Setting Standards for the XXIst Century”,
ICALEPCS’2007, Knoxville, October 2007.

[2] IBM Rational Unified Process:
www.ibm.com/software/awdtools/rup/

[3] G. Kruk et al., “Development process of accelerator
controls software”, ICALEPCS 2005, Geneva,
October 2005.

[4] Concurrent Versions System:
http://www.nongnu.org/cvs/

[5] Apache Ant: http://ant.apache.org/
[6] JUnit: http://www.junit.org/
[7] PMD: http://pmd.sourceforge.net/
[8] Cenqua Clover: http://www.cenqua.com/clover/
[9] Atlassian Bamboo:

http://www.atlassian.com/software/bamboo/
[10] Atlassian Jira:

http://www.atlassian.com/software/jira/
[11] ViewVC: http://www.viewvc.org/
[12] Cenqua Fisheye: http://www.cenqua.com/fisheye/
[13] G. Kruk et al., “LHC Software Architecture [LSA] –

Evolution Toward LHC Beam Commissioning”,
ICALEPCS 2007, Knoxville, October 2007.

[14] Peter Sollander et al., “Alarms Configuration
Management”, ICALEPCS 2007, Knoxville, October
2007.

RPPB05 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Engineering Processes, Project Management Collaboration

614

