
SOFTWARE INTEGRATION AND TEST TECHNIQUES IN A LARGE
DISTRIBUTED PROJECT: EVOLUTION, PROCESS IMPROVEMENT,

RESULTS

P. Sivera, M. Pasquato, ESO, Garching, Germany

Abstract
The Atacama Large Millimeter Array (ALMA) is a

radio telescope that is under construction in Chile. The
software for the project is being developed by the
Computing Integrated Product Team, (IPT), which has the
responsibility of realizing an end-to-end software system
consisting of different subsystems, each one with
specified development areas. Within the Computing IPT,
the Integration and Test subsystem has the role of
collecting, building, testing the software produced and
preparing releases. In this paper, the complexity of the
software integration and test tasks is analyzed and the
problems due to the high geographical distribution of the
developers and the variety of software features to be
integrated are highlighted. Different implemented
techniques are discussed, among them the use of a
common development framework (the ALMA Common
Software or ACS), the use of standard development
hardware and the organization of the developers work in
Function Based Teams (FBT). Frequent automatic builds
and regression tests repeated regularly on Standard Test
Environments (STE) are also routinely used. Advantages,
benefits and shortcomings of the adopted solutions are
presented.

ALMA PROJECT OVERVIEW
The ALMA radio observatory is being built with the

participation of institutes distributed over three
continents, namely Asia, Europe and North America.
There are more than 14 different sites involved in the
software development, grouping a total number of, at
present, 65 FTEs. Since not all developers work full time
for the ALMA project, the actual number of people we
have to deal with is much higher, often by a factor of two.
Within the Computing IPT, the ALMA software
developers are partitioned in subsystems. A subsystem is:

- a group of people and its leader, who have to
develop a portion of the ALMA Telescope System

- an area in our configuration control tool (CVS)
repository where the software developed within
that subsystem is checked in.

There are also subsystems whose primary scope is not to
develop but, for example, to design the overall software
architecture, to define the software engineering practices
or, finally, to take care of the integration and test of the
whole software produced. The Integration, Test and
Support (ITS) subsystem is in itself spread out around the
world: two testers in Japan, 4 in Germany, 2 in the United
States, (in total 5.1 FTEs) each of them with different
experiences and skills, so that the first integration work

had to be done among the members of the integration
team! A second challenge for the ITS subsystem is the
variety of the software to be integrated and tested, which
includes the Graphical User Interface (GUI) for the
astronomers to prepare an observation proposal, the
software to actually execute the observation, the control
software characterized by real-time behaviour and used to
command the antennas, the receivers and the correlator,
the tools to produce data and reduce them, the archive
system, the telescope operator GUIs.

STANDARDS AND TOOLS

One of the first decisions which has been taken in
within the Computing IPT was to define a standard set of
tools accompanied with common rules to be followed at
every site. ESO had already successfully adopted such a
strategy in other big projects, such as the control system
for the Very Large Telescope (VLT) project and ALMA
has benefited from the VLT project expertise. First of all,
the supported platforms have been identified, for both
high level and real-time developments. Then, the
following development tools and infrastructures have
been adopted:

- Usage of the Alma Common Software (ACS) at
every site. ACS has been the subject of other
papers presented at ICALEPCS, for example see
[1]. Briefly, it consists of a set of applications built
on top of CORBA. The purpose is to simplify the
development in each of the supported languages
adopted in the ALMA project, providing the
developers with common services like logging
system, error handling, alarm generation and
monitoring, configuration database, archiving and,
at the same time, hiding the complexity of the
CORBA middleware. The basic concept is a
component/container model, where each container
implemented in one of the ALMA development
languages handles the lifecycle of one or more
components implemented in the same language
and mediates the services listed above. Being thus
relieved from system programming concerns, the
developers only need to write the application
components.

- Usage of a standard development environment.
ACS not only provides the necessary tools to
develop, but also a set of environment variables
already prepared in order to access those tools in
the correct way. All these environment variables
are put in a single file, in a standard location and
every developer must source that unique file to be

ROAB03 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Engineering Processes, Project Management Collaboration

508

able to work correctly in the ACS/ALMA
environment.

- A common tool for version control (CVS): the
same repository is used for all sites participating in
the ALMA project; the software under every
subsystem is organized in packages and every
package is made up of modules, each with a
predefined directory structure. Developers are
responsible for one or more software modules. The
modules must be prepared using templates which
create the correct set of subdirectories of the
module. And those directories are mandatory so
that the ALMA build system can work properly.

- Common rules to build and install every module. A
common Makefile (called acsMakefile) based on
gnu make is provided together with ACS and every
module must contain a Makefile which includes
the acsMakefile. The acsMakefile defines the rules
to build in the different supported development
languages used in the ALMA project. In this way,
the make rules (including compiler and linker
options) are the same for every developer.

- A standard test environment (STE) has been
prepared. The STE consists of a set of machines
installed by the ITS team according to very well
established standards and conventions, which span
from the number of rpms installed on the machines
to the users’ definition and environment. It is
primarily used by ITS to integrate and test the
overall ALMA software, and it is being installed at
the operational site as well, where it will work with
the real hardware. At the development and
integration sites, it should be considered as a model
which tries to reproduce the operational
environment, using software simulators when the
lack of hardware has to be overcome. Developers
are also invited to test their software releases
against the STE, in this way the peculiarities due to
the personal development workstations are
eliminated.

- A standard tool called “Tool for Automated
Testing”, (tat) developed at ESO, is also being
provided with ACS. This is a framework which
helps running a test suite with only one command
and reports the result of the test suite in a simple
and clear way, printing to the standard output the
word PASSED or FAILED. It is a general rule that
ALMA developers must supply a (unit) test suite
for every software module they develop. The tool
is also being integrated with the different Junit,
Pyunit and C++unit frameworks and recently we
have begun integrate it into the DejaGnu project,
thanks to the cooperation with colleagues from the
VIRGO project.

- Finally, since the very beginning of the ALMA
project, a tool for bug tracking (Jira) has been
adopted, so that every software problem or change
request is kept under control.

ALMA SOFTWARE RELEASE CYCLE
A major ALMA SW release is prepared once a year,

using the subsystems releases delivered the 30th of
September every year. After the subsystems deliver their
code, ITS has got two months time to deliver the
integrated ALMA SW release. A minor ALMA software
release is prepared in the same way 6 months after the
major release.

How do the different subsystems deliver their software
to the integration group? Which integration strategy is
most suitable for a project like ALMA? And how can we
ensure that the integration of such diverse software will
be successful in the time frame allocated to the integration
activities? We tried to answer these questions already in
the very preliminary phase of the project, even before the
first lines of code were produced. This does not mean that
we got it right! But the fundamental idea was to try to
avoid a big bang integration, a few days or weeks before
the major or minor release. We wanted to approach as
much as possible the concept of continuous integration.

Continuous ntegration – onthly tegration
One of the cornerstones of the project's development

philosophy was to enable the ITS team to run the software
end to end (involving all, or almost all subsystems) from
the very first integration. We first tried to find a formal
way to get the software delivered from the different
developers spread out around the world. We wanted to be
able to retrieve all the ALMA software from CVS in an
automatic way and keep track of the different integrated
software baselines at every specific date in the software
development cycle. We required the subsystems to tag
their software in CVS by the end of each month with a
monthly tag according to some established naming
conventions. ITS was tasked with building the software
and producing an end-to-end running system with the
same periodicity, once a month. In this way, we could
approach the release deadline with the hope that the
monthly integrations would have uncovered most of the
problems.

There are two basic shortcomings with this approach.
One external problem was due to the fact that the
integration of the software was just at its inception,
therefore we had to face, at every monthly integration, at
least for the first eight months, a huge quantity of build
problems, so that the time left to run integration tests was
always too short and often we were approaching the
following monthly integration without being able to really
finish the previous one. Another big problem was that
every subsystem was working in isolation; developers
within a subsystem were supposed to develop a certain
number of features according to a formal software plan by
the release deadline, but there was not enough
communication across subsystems. This had as a
consequence that the integration was always very painful
and most of the integration time was spent in trying to
sort out miscommunication problems.

I M In

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA ROAB03

Engineering Processes, Project Management Collaboration

509

We understood very quickly that it was necessary to put
together people from the different subsystems,
organizing face to face meetings at least at every major
and minor release. Still, the release integrations for the
first couple of years were barely managing to deliver a
partially running system.

Continuous ntegration - Function Based Teams
To improve the quality of the software delivered and to

provide our Antenna Test Facility (ATF)* with some
usable software, we adopted a completely different
approach which has now been in use for almost two years.
At the beginning of every release cycle, the needed
functionality is identified: for example, by a certain
project deadline (read: release), the antenna at the test
facility should be able to do optical pointing, holography
and should work with a monitor database system. The
development of these three overall features of the ALMA
software requires contributions from different
subsystems. We then organize Function Based Teams
(FBTs), (proposed by our colleague Dave Clarke from
ATC, UK) consisting of developers from the involved
subsystems as well as a leader whose main goal is to
bring the FBT to successfully deliver the planned feature
on schedule. Every FBT normally works on a specific
branch, not on the CVS main trunk, so that this basic
principle is respected: the HEAD of the software in CVS
should always be stable.

The life time of an FBT is normally of the order of two
months. There should be in average 3-4 FBTs per release
cycle. In every group, at least one representative from ITS
takes care of writing test plans and test cases already
during the development of the feature. At the same time,
the software of the branch is built and tested, basically
every night, in the STE.

During the life of a FBT, there are some milestones that
have to be respected, when the software produced should
be delivered and tagged following new agreed naming
conventions for the branches. These milestones are: the
end of the development of the feature, the phase of the
merge back to the trunk of CVS and the validation of the
software after the merge, which is done by ITS only,
running all available regression tests.

This approach based on FBTs has been very successful
and the major benefit for ITS is that we can really follow
the development of the feature and immediately think
about how to test it. The only difficulties are in
maintaining the deadlines for the delivery of the
functionality. Very often compromises have to be made,
like dropping some functionality for a specific release or
adjusting the release cycle to the deliveries of the FBTs,
maybe delaying the release date by few weeks. The
organization of face to face meetings is still necessary for
properly concluding the work of a FBT, and sometimes
more than one of such meetings per FBT has to be
planned.

* The ATF shares the site of the Very Large Array (VLA) in New
Mexico where the first ALMA prototype antennas have been assembled

SUMMING IT UP
The introduction of the FBTs was a major step forward

in the way the release cycle is organized and greatly
helped us to integrate more smoothly, and deliver better
tested and more usable releases.

Testing the integrated system end to end from the start
is a practice that has both advantages and disadvantages.
It is probably good, in particular when dealing with
object-oriented software, to immediately test the
interfaces among the components. This has the drawback,
however that the testing effort is done on an ever
changing system, so that much time is spent in
consequently changing the test cases.

The adoption of an independent test group is considered
as an advantage and a good practice, but a peculiar
mistake done in ALMA was not to require development
skills for the testers. Instead we have learned that to be
able to write better and automated tests, we do need to
have knowledge in the languages used in the ALMA
project.

Referring to the levels of testing maturity identified by
Boris Beizer [2], here is where we are:
- Level 0: there is no difference between testing and

debugging. This still happens too often, in particular
in many of the face to face meetings during the
development phase of a FBT.

- Level 1: the purpose of testing is to show that the
software works. We normally reach this level during
the validation phase at the end of the work of a FBT.
This also means that we do not manage to do more
tests than proving the software works for the
functionality it was supposed to deliver. The reasons
are: time constraint vs number of features to test;
often the merge phases are not that smooth and leave
a lot of open problems that we have to face during
the validation phase.

- Level 2: the purpose of testing is to show that the
software does not work. For the last few release
cycles, we have begun to think about negative tests as
well.

- Level 3: the purpose of testing is not to prove
anything, but to reduce the perceived risk of not
working to an acceptable value. Only recently we
began to try to really understand the quality of the
software under test and to evaluate it from the point
of view of its deficiencies and impact on the users if
the system is shipped in its present state.

There exists also a fourth level which focuses on making
software more testable from its inception. This level and
the rigorous adoption of the test maturity model (TMM)
should be considered like a desirable evolution of the
testing practices within the ALMA project.

REFERENCES
[1] G. Chiozzi et al., “The ALMA Common Software

ACS - Status and Developments”, ICALEPCS 2005.
[2] L. Copeland, “A Practitioner’s Guide to Software

Test Design”, Artech House Publishers, 2007.

I

ROAB03 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Engineering Processes, Project Management Collaboration

510

