
JAVAIOC

M.R. Kraimer, 2826 Lake Ave, Osseo MI, 49266, USA

Abstract
EPICS [1] is a set of Open Source software tools,
libraries, and applications developed collaboratively. It is
used worldwide to create distributed soft real-time control
systems for scientific instruments such as particle
accelerators, telescopes, and other large scientific
experiments. An IOC (Input/Output Controller) is a
network node that controls and/or monitors a collection of
devices. An IOC contains a memory resident real-time
database. The real-time database has a set of “smart”
records. Each record is an instance on a record of a
particular type. JavaIOC is a JAVA implementation of an
EPICS IOC. It is like a Version 3 EPICS IOC, but extends
the data types to support structures and arrays.

OVERVIEW
A JavaIOC [2] is an IOC implemented in Java. A

running JavaIOC has a “smart” memory resident soft real-
time database. It is called smart because a record can be
processed. The data is composed of Process Variable
(PV) Data, which is structured data composed of 0 or
more fields. Each field is accessed via interface PVField.
PV Data is described in more detail in the next section.

Associated with each PVField is a Database Field
(DBField) interface. A DBField and extensions, e.g.
DBRecord provide additional features including record
locking and monitoring of puts to any field in a record.

Each record instance has an associated record
processor. The record processor supports synchronous
and asynchronous processing.

Each record instance has an associated support module.
When the record processor is asked to process a record, it
calls the process method provided by the support. The
support determines the semantics of record processing,
Since each field can optionally have associated support,
support can call other support. Support can link to
hardware, other records, or other entities.

Event and Periodic Database scanners are provided. An
event scanner requests that a set of records be processed
when a named event occurs. A periodic scanner requests
that a set of records be processed at a regular interval.

A JavaIOC has a Database Definition Database (DBD)
which has definitions for the following: structure,
recordType, and support. A structure definition describes
the fields contained in a structure; recordType describes a
top level structure; support locates a Java factory that
creates support. XML (Extensible Markup Language) is
used to create DBD instances. A parser is provided that
reads the XML definitions and puts the result into the
DBD. DBD instances can be added to a running IOC.

A JavaIOC has an IOCDB (IOC Database) which holds
record instances. An XML parser reads record instance
files and by also using the DBD definitions creates new
record instances. New record instances can be added to a
running IOC.

The data in JavaIOC records is accessed via Channel
Access (CA). CA accesses the PV data, i.e. PV Data is
designed to be exported. NOTE: remote CA is only
partially implemented.

The JavaIOC provides a set of generic structure and
recordTypes as well as generic support.

The remainder of this paper provides more details about
PV Data and about support.

PROCESS VARIABLE DATA
A Process Variable (PV) Database contains record

instances where each instance is a structured set of data.
A record instance is a top level structure. A structure
contains zero or more fields where each field holds data
of one of the supported data types.

PV Data Types
 The supported data types are: boolean, byte, short, int,

long, float, double, string, array, and structure. The types
boolean, ..., double are Java primitive types. String is a
Java String. An array has an element type that is any of
the supported types. A structure has zero or more fields
with each field having any of the supported types. Since
the array elements can be an array or a structure and since
a structure field can be an array or a structure, arbitrarily
complex structures are supported. The types boolean, ...,
string are defined as primitive. The types byte, ..., double
are defined as numeric.

Introspection Interfaces
Field is the base introspection interface. Array and
Structure extend Field. Field methods include getType,
getFieldName, and getSuportName. Array adds method
getElementType. Structure adds getStructureName and
getFields. Field and Structure also have a number of
convenience methods.

PV Data Interfaces
 PVField is the base interface for accessing PV Data.
Every PV Data field, including a structure, array, and a
record instances has an associated PVField, or extension,
that provides access to the data. Among the PVField
methods are: getField, getParent, and getPVRecord.

PVBoolean, ..., PVString each extend PVField by
providing get and put methods which provide access to
the data itself.

PVStructure extends PVField. It provides method
getPVFields, which gets the array of PVField interfaces
for the fields of the structure. It also provides a number of
convenience interfaces. PVRecord extends PVStructure
and provides method getRecordName.

PVArray extends PVField and is the base for all array
data. PVBooleanArray, ..., PVStructureArray each extend
PVArray by providing get and put methods that get and
put a sub array. Each has an associated interface
BooleanArrayData, ..., StructureArrayData. The get

MOPB04 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Software Technology

40

methods expose an underlying Java array via the
associated interface. The array interfaces satisfy two
important requirements: 1) an array can efficiently be
copied to another array of the same type, and 2) an array
implementation can expose only a sub array. Two
examples where these requirements are important are
passing an array over a network and a transient digitizer.
In both cases a large array must be transferred in chunks.

PV Factories
Factory FieldFactory creates introspection instances

and returns interfaces that can be attached to data fields.
So far there has been no need to provide other
implementations but base classes are provided.

Factory PVDataFactory creates an implementation of
PVField and all it’s extensions. It is often desirable to
replace the default implementations. Base classes are
provided to aid implementation.

Factory ConvertFactory returns an interface Convert,
which provides conversion methods. All reasonable
conversions between the supported data types are
implemented. In addition conversion to/from Java types
are provided.

DATA MODEL
The data model has two objectives: 1) support general

purpose client tools such as display managers, archivers,
and alarm handlers; 2) allow generic support.

The data model is simple: All related data appears
together in a structure.

Client tools are normally interested in a data value and
possible properties for the data. The data model requires
that a structure holding information intended for a client
tool have a field named “value”. Every other field in the
structure, except a null structure, is a property of the value
field and the field name is the property name. A null
structure is a structure that has no fields and no support.

In support of the model, interface PVField has methods
findProperty and getPropertys(). These look for fields but
exclude null structure fields. Examples appear later.

Support can be attached to any field. Record support
just happens to be the support that is attached to a record
instance. If the support is generic it also supports an
embedded structure. Generic support looks for fields, by
name, that it requires. It does this during initialization by
using the introspection interfaces.

Associated with each primitive type and each array of
primitive types, the JavaIOC provides a DBD structure
and recordType definition. These are generic definitions.
Depending on how record instances are defined, a record
instance can just hold data, can be an input record, can be
an output record, etc. The following is the definition for
recordType double.

<structure name=“double” supportName=“generic” >
 <field name=“value” type=“double” />
 <field name=“alarm” type=”structure” />
 <field name=”timeStamp” type=”structure” />
 <field name=”input” type=”structure” />
 <field name=”valueAlarm” type=”structure” />
 <field name=”output” type=”structure” />
 <field name=”display” type=”structure” />
 <field name=”control” type=”structure” />

 <field name=”history” type = “structure” />
</structure>

By default, every field except value is a null structure.
Unless a record instance overrides the default, a null
structure field is not a property of value.

If a record instance is defined as:

<record name = “dataOnly” type = “double” />

then dataOnly is a record that has a double value, which
has no properties.

If a record instances is defined as:

<record name = “example” type = “double” >
 <alarm structureName = “alarm” />
 <timeStamp structureName = “timeStamp” />
 <display structureName = “display” >
 <units>volts</units>
 <limit structureName = “doubleLimit” >
 <low>0.0</low>
 <high>10.0</high>
 </limit>
 </display>
</record>

then example is a record instance that has a double value
and value has the properties alarm, timeStamp, and
display. If a client has a “PVRecord pvRecord” interface
to the record than it can ask for:
PVField pvField =
pvRecord.findProperty(“value”);

It can than ask for and get a non null result for:

PVField pvAlarm = pvField.getProperty(“alarm”);
PVField pvUnits = pvField.getProperty(
 “display.units”);
PVField pvLowLimit = pvField.getProperty(
 “display.limit.low”);

GENERIC SUPPORT
As a first example of generic support consider the support
named “generic”. It is the default support for structure
double defined in the previous section. It is also the
default support for most structure and recordType
definitions. It looks at each field in the structure(or
recordType) to which it is attached. When the process
method of generic is called, it calls the process method of
each field that has support.

As mentioned above the double recordType can be
used to create a record instance that is an input record.
The following is an analog input record:

<record name = “ai” type = “double” >
 <input structureName = “linearConvertInput” >
 <input structureName = “pdrvInt32Input” >
 <!--- definitions for portDriver -->
 </input>
 <linearConvert supportName =

“linearConvertInput”>
 <engUnitsHigh>10.0</engUnitsHigh>
 <engUnitsLow>0.0</engUnitsLow>
 </linearConvert>
 </input>
</record>

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA MOPB04

Software Technology

41

To support this the JavaIOC defines a structure named
linearConvertInput, which has fields named value, input,
and linearConvert. Structure linearConvertInput has
generic as it’s support. pdrvInt32Input is a structure and
associated support for portDriver, which is a facility for
connecting to hardware. When the above record is
processed the following happens.

● Support for the record calls the support for input.
 Input support calls the support for input.input.

■ It gets a value and puts it into input.value. This
is the raw value.

 Input support calls the support for linearConvert.
■ It gets the value from input.value, converts it to

engineering units, and puts the result into
value.

The JavaIOC supports “device” records. For example a
powerSupply structure can be defined as:

<structure name=“powerSupply”
supportName=“generic” >

 <field name=“power” type=“structure
structureName = “double” />

 <field name=“voltage” type=“structure
structureName = “double” />

 <field name=“current” type=“structure

structureName = “double” />
</structure>

A record that is an array of power supplies can be
defined as:

<recordType name = “powerSupplyArray”
supportName=“generic” >

 <field name = “supply” type = “array”
elementType = “structure” />

</recordType>

Assuming a record instance is properly defined a client
could ask for the following and get a non-null return:

pvRecord.findProperty(“supply[0]power.value”);
pvRecord.findProperty(“supply[1].power.value.display”);
...

The first request is a request to find the value of the
power for the first supply. The second is a request to find
the display property of the value of the power for the
second supply.

REFERENCES
[1] EPICS: http://www.aps.anl.gov/epics
[2] JavaIOC: http://epics-doc.desy.de/ioc/javaIOC

MOPB04 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Software Technology

42

