
GRID AND COMPONENT TECHNOLOGIES IN PHYSICS APPLICATIONS

S. Shasharina, N.Wang, S. Muszala, R. Pundaleeka, Tech-X Corporation, Boulder, CO 80303, USA

Abstract
Recent advances in computer science have made

development and management of large-scale distributed
and high-performance applications possible. Examples of
such advances are Grid and Component technologies. In
this paper we share our experience in bringing Grid and
Component technologies into fusion applications.

INTRODUCTION
The paper consists of two parts. The first part is

devoted to Grids and describes our experience working
with Globus in developing a service for accessing fusion
simulations data. The second one introduces Components
and describes some efforts using them for the fusion
integrated modeling applications.

GRID APPLICATIONS

Grids
There are many detailed papers rigorously defining the

concept of a Grid [1], and here we give only a simplified
definition of it - based on our experience. Simply put, a
Grid is a set of computers connected via a network and
shared by a group of people performing various
computing and data management tasks. Grids use
middleware that makes them more valuable than just a
sum of its constituents and protects resources via some
kind of user authentication and authorization.

Without a value added, a Grid does not make too much
sense. A question like “Why do I need a Grid, since I can
just login to all our computers, scp needed data and run
my codes without a pain of installing new software and
extra pain of getting a certificate?” is a valid question.
The value is added by the services offered by the
middleware. Each service is typically a reflection of a
particular virtualization model. Virtualization is an
abstraction that presents the resources based on the
conceptual view of a particular application.

For example, instead of asking the system to bring file
A from computer B and file C from computer D, one can
request all the data which is generated by discharges with
the current higher than x. In this example, data becomes
virtualized, in that it is characterized by a particular
attribute, rather than by its form and location. Another
example would be if a person wants to submit a
computational job needing M processors with software Z,
but does not care where exactly to run it or store the
results. Virtualized resources (processors and data
storage) can figure out how to allocate themselves.

Grids can be used to save storage, because one does not
need to replicate data anywhere; save travel funds,
because one can work with the whole system and also
collaborate remotely; and perform data operations more
efficiently, because data analysis and visualization use

attribute queries rather then directly referencing data by
location and name. Grids can enable things that were not
possible before, such as global data and network analysis
and global detection, and automate error-prone manual
workflows.

The most successful and widely used Grid middleware
is Globus [2]. Conceptually Globus exists in the pre-Web
Service and Web Service form. The pre-Web service
Globus introduced an efficient data transfer (GridFTP),
means to run remote jobs and do this with adequate
security. The Web Service Globus added a capability to
create stateful services explicitly allowing virtualization
based on a desired interface. In the next session, we
describe one of several Globus-based Web Services that
we designed in our projects.

Fusion Grid Service
Fusion and plasma simulations typically run on remote

supercomputers and can generate terabytes of 3D data.
The data is commonly stored in the HDF5 [3] format,
which has a convenient API to query and access data of
interest through methods that extract data into the local
memory directly. The goal of the Fusion Grid Service
was to mimic this local HDF5 API so that scientist could
access remote data as if it was local. Such access to
remote data makes the transfers of the whole (possibly
very large) file unnecessary and storing accessed data
optional as data can be analyzed in the client memory.

The development of such a service starts with defining
its interface using the Web Service Definition Language
(WSDL). WSDL requires extension to accommodate
complex types such as multidimensional arrays. To
extract and transfer HDF5 datasets (which are
multidimensional arrays) we had to define two methods.
The first method performs a query for the array metadata
(numerical type, rank and dimensions). Using this
method, the client allocates the needed memory, and then
uses GridFTP (not a SOAP call) in the second method to
copy the extracted dataset into the client memory (Figure
1). Using GridFTP rather than a SOAP call required the
extra step of saving the extracted data in a temporary file
on the server, as we could not find a way to do GridFTP
transfers from memory to memory. The decision to use
GridFTP was made despite this extra step because
GridFTP allows using multiple, parallel data streams and
is much more suited for large data transfers.

In doing this work we used Globus 4.0.2 and faced a
couple of inconveniencies. First, Globus generates
Makefiles for client and server, but does not provide a
means to include external files and libraries prior to the
generation of Makefiles. We had to replace the Globus
configuration files, and create custom shell scripts to
generate the final Makefiles in order to use HDF5 in the
implementation. We also found that we had to put all

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA MOPB01

Software Technology

29

implementation in the generated service directory. Later
we figured out that this can be avoided by putting
implementation into a shared library and use dlopen() to
access implementation in the generated directory.

Second, we discovered that only the person who starts
the service (C Globus container) could use the service.
This problem appears to be only in the C Core, and is not
present in Java bindings. The Globus team provided us
with a patch that fixed the problem but we do not know if
Globus is patched in the later release. Generally, it is our
impression that the Java Core of Globus is more
developed than the C Core.

The service is now fully implemented and has methods
to query datasets metadata, get a dataset, get a hyberslab,
select a stride and perform the full file transfer using
multiple GridFTP streams. It is installed at NERSC,
PPPL and Tech-X.

Performance Tests
Prior to the full development of the service we

performed timing tests comparing the service’s
performance with a CORBA C++ system using TAO-
1.5.2 [4] and gSoap C++ service using gSoap-2.7 [5] with
the Direct Internet Massage Encapsulation (DIME)
attachment using the following three connection setups
(see Table 1):
1. LAN: the server and the client are connected via a

100Base-T switch.

2. WAN: the server and the client are connected via the

“regular” Internet backbone.

3. ESnet: the server and the client are connected via a

high speed wide-area network, such as the ESnet [6]

(OC-3: 155 Mbps), sponsored by the DOE.

Setup Bottleneck bandwidth

(MByte/sec)

RTT

(msec)

BDP

LAN 12.5 0.27 3.4 KB

ESnet 125.0 72.0 9.0 MB

WAN 0.19 162.0 31.4 KB

Table 1: The connectivity of the test cases. RTT is the

round trip delay time. BDP is the bandwidth-delay-

product.

Each test had the following steps: establish the
connection, query dataset metadata, allocate adequate
memory on the client side, and send data to the client. In
the case of our service, there was an extra step to save
dataset in a temporary file on the server. Figure 2 shows
the throughput of each of the HDF5 retrieval solutions
using different networks (see also [7]).

As seen from Figure 2, in the LAN connection, our
service has too much overhead (related to security and
storing data in a temporary file) and is less efficient than
the other solutions. CORBA system saturates the
connection in this case, while gSoap saturates about 50%
of it.

In the ESnet scenario, our service seemingly loses if a
single stream is used for GridFTP. But with an addition of
just one more stream, it fares better than CORBA and
gSoap (see Fig.3). None of the systems reached the
bottleneck throughput. This is probably due to the fact
that the receiving buffer at Tech-X is 85K, which is much
smaller than the ESnet BDP.

In the WAN scenario, our service gives the best results
and uses the bandwidth well with just one stream, while
other systems underperform. Though the service fared
well versus CORBA and gSoap in this setting, not much
difference was observed in bandwidth utilization when
multiple streams were added to GridFTP client. This is
due to the fact that just one stream (0.16 MB/sec, WAN
results on Figure 2) is close to the bottleneck
(0.19MB/sec in Table 1) so adding more streams does not
improve the throughput.

Our performance tests proved that using multiple
streams of GridFTP works best in networks that have
large bandwidth and large latency connections and
justified our choices of the service technology (Grid
Service using GridFTP).

This said, we would like to note that in choosing
distributed solutions, developers might not be directed
only by the performance tests. Other criteria include
provided security (our service using Globus is the winner
here), size of the footprint (gSoap is the lightest, then
CORBA followed by Globus), and the ease of running the
service (CORBA and gSoap need only the server and the
client processes, while our solution needs a GridFTP
server running on the server side). This means that other
teams might find approaches different from ours more
plausible.

H5WS Client

GridFTP Client

Network Communication Layer

Stubs

Globus Container

Skeletons

Implementation (HDF5)

HDF5 Files

Extracted Dataset

GridFTP Server

<<extraction>>

Figure 1: The architecture of the Fusion Grid Service.

MOPB01 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Software Technology

30

COMPONENTS APPLICATIONS

Component Technologies
The increased complexity of software requires a

scalable mechanism for building systems consisting of
multiple interacting, interchangeable and reusable parts.
Such parts should be designed in such a way that
evolution of particular subsystems does not affect the
design and functioning of the whole. These demands are
addressed by software components.

There are many frameworks, scientific and commercial,
that claim to support component model. We prefer to use
a somewhat maximal definition, which is driven by
physics projects in which we are participating. Software
components should:
• interact through well-defined interfaces

(encapsulation);
• separate implementation from interfaces;

• be able to be deployed independently;
• explicitly support composability by distinguishing

between the interfaces that they provide and use.
Demanding that components should have two kinds of

interfaces clearly separates them from objects, since
objects also interact through interfaces, can separate
interfaces from implementation by using interfaces or
abstract classes and inheritance, and support
composability by, for example, using pointers to each
other. Often a part of an interface that expresses the
connectivity of the component is called a port. Provides-
port is a set of methods that are provided by the
component, i.e. can be called by other components who
have a matching Uses-port, expressing the needs of these
components in this functionality.

As an example illustrating ports roles, lets consider an
application that advances a variable obeying a non-linear
diffusion equation:

(x, t)

t
=

x
D(,x)

x

To solve this equation we introduce three components.
The Driver/State component keeps the current value of t
and the current value of as a function of x. The Solver
component knows how to advance from moment t to
t+dt given the value of D. The Transport component
knows how to calculate D given x and . Hence the
advancement of can be then presented as composition of
these components shown on Figure 3. Driver asks Solver
to Advance by dt and passes dt and the state: the value of

. Within the Advance call, Solver invokes Eval
Transport port of Transport to evaluate diffusion
coefficient D using current , and then calculates new .
This new value is then returned by the Advance method
to Driver.

 Figure 3: Three components connected to form an
executable for solving a diffusion equation. A blue
section on the left side of each component represents a
Provides-port, and the yellow part on the right represents
a Uses-port. The Green Go port is specific for the driver
component that starts the execution.

Why one would want use such components rather then
implementing a sequence of steps? The advantage
transpires only if one would like to use multiple
implementations of such components communicating
through the same Advance and Eval Transport ports.
Designed correctly, these ports could be used as standard
connectors between multiple solvers and various transport

Data Access Throughput over LAN

0

5

10

15

0 5 10 15 20 25 30 35 40 45

Data Size (MB)

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Data Access Throughput over WAN

0.00

0.04

0.08

0.12

0.16

0.20

0 5 10 15 20 25 30 35 40 45

Data Size (MB)

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Data Access Throughput over ESNET

0.00

0.20

0.40

0.60

0.80

1.00

0 5 10 15 20 25 30 35 40 45

Data Size (MB)

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

H5WS/P1 CORBA gSoap H5WS/P2

Figure 2: Data access throughput versus the size of
transferred data for LAN, ESnet and WAN setups.
H5WS is a short name for the Fusion Grid Service.

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA MOPB01

Software Technology

31

models with varying implementations. One then can have
multiple combinations of them – each new combination
affecting only a subset of components. For example, one
can have multiple models for anomalous transport in
tokamaks and use solvers with different discretizarion
schemes and implicitness.

In addition to the component requirements listed above,
it is desirable that components:
• support multiple languages;
• support High Performance Computing (HPC);
• allow remote invocation.
Multilanguage support additionally separates

components from object-oriented models and is needed
for development of integrated simulations combining
modern and legacy components written in different
languages. The requirement for remote invocation comes
from the need to support distributed computing as many
applications need to run on distributed data and separate
the compute-intensive “solving” part running remotely
from a less demanding data analysis running locally.

Industry has recognized the benefits of the component
approach a long time ago. Examples are Java Beans and
COM components. But since the needs of commercial
applications differ from the needs of scientific computing,
Java Beans and COM components do not satisfy all our
requirements. For example, neither model supports two
kinds of interfaces. Also, Java Beans are language
specific, while COM is platform specific and primarily
for C/C++. They do support remote invocation, but are
seldom used for HPC applications.

Of all the commercial products, CORBA Component
Model (CCM) [8] is the closest to support our component
definition. In fact, the CCM specification does satisfy all
the required and two of the desirable requirements listed
above - multilanguage support and remote invocations.
But while many CORBA implementations provide
support for Java, C++ and Python and CORBA objects
(different from components) written in various languages
can interoperate, there are too few implementations of
CCM, and in reality they support either C++ or Java, thus
not allowing components in many languages. Moreover,
none of CORBA implementations supports Fortran,
which is heavily used in scientific computing. Finally,
CORBA is seldom used in HPC applications.

Due to the limitations of commercial components,
several scientific components frameworks have been
developed that addressed some of the limitations. The
domain-specific ESMF [9] and SWMF [10], for example,
are high performance frameworks, but do not support
multiple languages (only C++ and F90, respectively).
Moreover, their interfaces do not discriminate between
Provides and Uses types. Finally, they do not support
remote invocations.

The most promising and well-developed scientific
component framework is the Common Component
Architecture (CCA) [11]. CCA component model
satisfies all the requirements of our component definition
and has strong support from a wide scientific community.

Language Interoperability Tool Babel
An integral part of CCA is Babel [12], a language

interoperability tool that is used to define components,
generate language mappings for them and provide for
remote invocations. Babel uses SIDL (Scientific
Interface Definition Language) to define interfaces and
relationships between components. The Babel
interoperability tool reads the SIDL description and
generates the necessary “glue” between different
languages. The “glue” mostly consists of client stubs and
server skeletons.

For example, here is an example of a SIDL definition
of a function taking double as an argument:

package newPackage version 1.0{
 class newClass{
 void doWork(inout double varX);
 }
};

Imagine that we want to call F90 from C++. Then we
use Babel to generate a C++ client stub and a F90
skeleton. The relevant part of the C++ client stub will
look like:

namespace newPackage{
 class newClass{
 public:
 void doWork (double& varX);
 };
};

The Fortran 90 implementation is done by inserting the
logic into the server skeleton:

recursive subroutine
 newPackage_newClass_doWork_mi
 (self, varX, exception)
!Implementation goes here
end subroutine newPackage_newClass_doWork_mi

Then in the main program one can call the C++ client
as follows:

main(){
 newPackage::newClass B =
 newPackage::newClass::_create();
 B.doWork(5.);
}

The same SIDL interface defined above can be used for
making remote calls between various languages. In this
case one needs to start a server process that runs Babel’s
ORB on a particular port and creates the worker object.
The client than needs to specify the host and the port to
access the object. In Java, this will look as follows.

public static void main (String args []) {
Sidl.rmi.ProtocolFactory.addProtocol
 ("simplehandle",
 "simple.rmi.SimHandle");
newPackage.newClass obj =
 newPackage.newClass.connect
 ("simhandle://hostname:9000/1000");
obj.doWork (100.0);

}

One can specify different choices of the client and
server languages. Currently, the Babel language bindings
include Fortran 77, Fortran 90, C, C++, Python, and Java.

MOPB01 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Software Technology

32

Babel is implemented very efficiently. Before we
decided to use it in our projects we performed
performance comparison between Babel and a standard
F2003 mechanism for interoperating with C
(ISO_C_BINDING module). From these tests we
concluded that using Babel should have a very small
overhead for our mixed language applications. The
results of one such test is shown on Figure 4.

The role of Babel will be growing as many scientific

disciplines strive to provide comprehensive modeling of
various phenomena and need to mix many codes written
in various languages in one application. To do this,
scientists first needs to standardize the interfaces of
conceptually similar modules, express them using some
common language and provide some “glue” allowing
their integration. All this can be done by Babel.

Use of Components in Fusion Applications
An example of a discipline that started looking at

components in order to unify interfaces and develop
complex applications is fusion theory. Its current thrust is
to provide integrated modeling of tokamaks. In 2006, two
SciDAC projects, SWIM (Center for Simulation of RF
Wave Interactions with Magnetohydrodynamics) [13] and
CPES [14] (the Center for Plasma Edge Simulation0,
were funded. In 2007, another integrating SciDAC
project, lead by Tech-X Corporation, FACETS [15] (the
Framework Application for Core-Edge Transport
Simulations) started.

Since migration to components is not simple and
requires a lot of learning and a paradigm shift, all projects
at the moment use a much weaker definition of
component than the one defined above. For example,
SWIM provides Python wrappers with standard interfaces
for each code involved in their integration and uses files
exchange for modules integration. FACETS project uses
standard C++ interfaces to define its modules. It strives
for the high performance in the beginning and supports
data exchange in memory rather than using files. That is

why FACETS uses Babel for calls from its C++
framework to the legacy modules transport, wall and edge
modules implemented as Fortran, C, and C++ libraries
with the interfaces standardized between types (Figure 5).

mmm95 glf23

Interfaces

f1,f2,...,fM

FMCFM

tglf

C++ Methods

BABEL

Interfaces

w1,w2,...,wN

WallPSI

C++ Methods

Fortran

BABEL

Fortran

C++ Class Interfaces

Figure 5: FACETS uses Babel to call legacy modules
from the C++ framework.

All three projects might unite in the upcoming Fusion

Simulation project some time next year and hopefully will
merge with the components technologies as the work
progresses and the technologies mature.

REFERENCES
[1] I. Foster, “What is the Grid? A Three Point

Checklist,” GRIDToday, July 20, 2002.
[2] http://www.globus.org/toolkit/.
[3] http://hdf.ncsa.uiuc.edu/HDF5/.
[4] www.cs.wustl.edu/~schmidt/TAO.html.
[5] www.cs.fsu.edu/~engelen/soap.html.
[6] http://www.es.net.
[7] Svetlana G. Shasharina, Chuang Li, Nanbor Wang,

Rooparani Pundaleeka, David Wade-Stein,
“Distributed Technologies for Remote Access of
HDF Data”, to appear in proceedings of the 16th
IEEE International Workshops on Enabling
Technologies: Infrastructures for Collaborative
Enterprises (WETICE-2007).

[8] http://ditec.um.es/~dsevilla/ccm/.
[9] http://www.esmf.ucar.edu/.
[10] http://csem.engin.umich.edu/swmf/.
[11] http://www.cca-forum.org/.
[12] http://www.llnl.gov/CASC/components/babel.html.
[13] http://cswim.org/.
[14] http://www.cims.nyu.edu/cpes/.
[15] http://www.facetsproject.org/facets.

Figure 4: Comparison of performance of Babel and
F2003 ISO_BINDING_C module. The graph shows the
time for an individual call from C to Fortran versus the
number of scalar arguments.

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA MOPB01

Software Technology

33

