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Abstract 
Recent advances in computer science have made 

development and management of large-scale distributed 
and high-performance applications possible.  Examples of 
such advances are Grid and Component technologies. In 
this paper we share our experience in bringing Grid and 
Component technologies into fusion applications. 

INTRODUCTION 
The paper consists of two parts.  The first part is 

devoted to Grids and describes our experience working 
with Globus in developing a service for accessing fusion 
simulations data.  The second one introduces Components 
and describes some efforts using them for the fusion 
integrated modeling applications. 

GRID APPLICATIONS 

Grids 
There are many detailed papers rigorously defining the 

concept of a Grid [1], and here we give only a simplified 
definition of it - based on our experience.  Simply put, a 
Grid is a set of computers connected via a network and 
shared by a group of people performing various 
computing and data management tasks. Grids use 
middleware that makes them more valuable than just a 
sum of its constituents and protects resources via some 
kind of user authentication and authorization.   

Without a value added, a Grid does not make too much 
sense.  A question like “Why do I need a Grid, since I can 
just login to all our computers, scp needed data and run 
my codes without a pain of installing new software and 
extra pain of getting a certificate?” is a valid question.  
The value is added by the services offered by the 
middleware.  Each service is typically a reflection of a 
particular virtualization model.  Virtualization is an 
abstraction that presents the resources based on the 
conceptual view of a particular application.  

For example, instead of asking the system to bring file 
A from computer B and file C from computer D, one can 
request all the data which is generated by discharges with 
the current higher than x.  In this example, data becomes 
virtualized, in that it is characterized by a particular 
attribute, rather than by its form and location.  Another 
example would be if a person wants to submit a 
computational job needing M processors with software Z, 
but does not care where exactly to run it or store the 
results.  Virtualized resources (processors and data 
storage) can figure out how to allocate themselves. 

Grids can be used to save storage, because one does not 
need to replicate data anywhere; save travel funds, 
because one can work with the whole system and also 
collaborate remotely; and perform data operations more 
efficiently, because data analysis and visualization use 

attribute queries rather then directly referencing data by 
location and name.  Grids can enable things that were not 
possible before, such as global data and network analysis 
and global detection, and automate error-prone manual 
workflows. 

The most successful and widely used Grid middleware 
is Globus [2].  Conceptually Globus exists in the pre-Web 
Service and Web Service form.  The pre-Web service 
Globus introduced an efficient data transfer (GridFTP), 
means to run remote jobs and do this with adequate 
security.  The Web Service Globus added a capability to 
create stateful services explicitly allowing virtualization 
based on a desired interface.  In the next session, we 
describe one of several Globus-based Web Services that 
we designed in our projects. 

Fusion Grid Service 
Fusion and plasma simulations typically run on remote 

supercomputers and can generate terabytes of 3D data. 
The data is commonly stored in the HDF5 [3] format, 
which has a convenient API to query and access data of 
interest through methods that extract data into the local 
memory directly.  The goal of the Fusion Grid Service 
was to mimic this local HDF5 API so that scientist could 
access remote data as if it was local.   Such access to 
remote data makes the transfers of the whole (possibly 
very large) file unnecessary and storing accessed data 
optional as data can be analyzed in the client memory. 

The development of such a service starts with defining 
its interface using the Web Service Definition Language 
(WSDL). WSDL requires extension to accommodate 
complex types such as multidimensional arrays.  To 
extract and transfer HDF5 datasets (which are 
multidimensional arrays) we had to define two methods.  
The first method performs a query for the array metadata 
(numerical type, rank and dimensions).  Using this 
method, the client allocates the needed memory, and then 
uses GridFTP (not a SOAP call) in the second method to 
copy the extracted dataset into the client memory (Figure 
1).  Using GridFTP rather than a SOAP call required the 
extra step of saving the extracted data in a temporary file 
on the server, as we could not find a way to do GridFTP 
transfers from memory to memory.  The decision to use 
GridFTP was made despite this extra step because 
GridFTP allows using multiple, parallel data streams and 
is much more suited for large data transfers. 

In doing this work we used Globus 4.0.2 and faced a 
couple of inconveniencies.  First, Globus generates 
Makefiles for client and server, but does not provide a 
means to include external files and libraries prior to the 
generation of Makefiles.  We had to replace the Globus 
configuration files, and create custom shell scripts to 
generate the final Makefiles in order to use HDF5 in the 
implementation.  We also found that we had to put all 
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implementation in the generated service directory.  Later 
we figured out that this can be avoided by putting 
implementation into a shared library and use dlopen() to 
access implementation in the generated directory.   

Second, we discovered that only the person who starts 
the service (C Globus container) could use the service. 
This problem appears to be only in the C Core, and is not 
present in Java bindings. The Globus team provided us 
with a patch that fixed the problem but we do not know if 
Globus is patched in the later release. Generally, it is our 
impression that the Java Core of Globus is more 
developed than the C Core. 

The service is now fully implemented and has methods 
to query datasets metadata, get a dataset, get a hyberslab, 
select a stride and perform the full file transfer using 
multiple GridFTP streams.  It is installed at NERSC, 
PPPL and Tech-X. 

 

 

Performance Tests 
Prior to the full development of the service we 

performed timing tests comparing the service’s 
performance with a CORBA C++ system using TAO-
1.5.2 [4] and gSoap C++ service using gSoap-2.7 [5] with 
the Direct Internet Massage Encapsulation (DIME) 
attachment using the following three connection setups 
(see Table 1):  
1. LAN: the server and the client are connected via a 

100Base-T switch. 

2. WAN:  the server and the client are connected via the 

“regular” Internet backbone.  

3. ESnet: the server and the client are connected via a 

high speed wide-area network, such as the ESnet [6] 

(OC-3: 155 Mbps), sponsored by the DOE. 

 

Setup Bottleneck bandwidth 

(MByte/sec) 

RTT 

(msec) 

BDP 

LAN 12.5 0.27 3.4 KB 

ESnet 125.0 72.0 9.0 MB 

WAN 0.19 162.0 31.4 KB 

Table 1:  The connectivity of the test cases.  RTT is the 

round trip delay time.  BDP is the bandwidth-delay-

product. 

 

Each test had the following steps: establish the 
connection, query dataset metadata, allocate adequate 
memory on the client side, and send data to the client.  In 
the case of our service, there was an extra step to save 
dataset in a temporary file on the server.  Figure 2 shows 
the throughput of each of the HDF5 retrieval solutions 
using different networks (see also [7]).   

As seen from Figure 2, in the LAN connection, our 
service has too much overhead (related to security and 
storing data in a temporary file) and is less efficient than 
the other solutions.  CORBA system saturates the 
connection in this case, while gSoap saturates about 50% 
of it.  

In the ESnet scenario, our service seemingly loses if a 
single stream is used for GridFTP. But with an addition of 
just one more stream, it fares better than CORBA and 
gSoap (see Fig.3).  None of the systems reached the 
bottleneck throughput.   This is probably due to the fact 
that the receiving buffer at Tech-X is 85K, which is much 
smaller than the ESnet BDP. 

In the WAN scenario, our service gives the best results 
and uses the bandwidth well with just one stream, while 
other systems underperform.  Though the service fared 
well versus CORBA and gSoap in this setting, not much 
difference was observed in bandwidth utilization when 
multiple streams were added to GridFTP client.   This is 
due to the fact that just one stream (0.16 MB/sec, WAN 
results on Figure 2) is close to the bottleneck 
(0.19MB/sec in Table 1) so adding more streams does not 
improve the throughput.   

Our performance tests proved that using multiple 
streams of GridFTP works best in networks that have 
large bandwidth and large latency connections and 
justified our choices of the service technology (Grid 
Service using GridFTP). 

This said, we would like to note that in choosing 
distributed solutions, developers might not be directed 
only by the performance tests. Other criteria include 
provided security (our service using Globus is the winner 
here), size of the footprint (gSoap is the lightest, then 
CORBA followed by Globus), and the ease of running the 
service (CORBA and gSoap need only the server and the 
client processes, while our solution needs a GridFTP 
server running on the server side).  This means that other 
teams might find approaches different from ours more 
plausible. 

H5WS Client

GridFTP Client

Network Communication Layer

Stubs

Globus Container

Skeletons

Implementation (HDF5)

HDF5 Files

Extracted Dataset

GridFTP Server

<<extraction>>

 
Figure 1:  The architecture of the Fusion Grid Service. 
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COMPONENTS APPLICATIONS 

Component Technologies 
The increased complexity of software requires a 

scalable mechanism for building systems consisting of 
multiple interacting, interchangeable and reusable parts.  
Such parts should be designed in such a way that 
evolution of particular subsystems does not affect the 
design and functioning of the whole.  These demands are 
addressed by software components. 

There are many frameworks, scientific and commercial, 
that claim to support component model.  We prefer to use 
a somewhat maximal definition, which is driven by 
physics projects in which we are participating.  Software 
components should: 
• interact through well-defined interfaces 

(encapsulation); 
• separate implementation from interfaces; 

• be able to be deployed independently; 
• explicitly support composability by distinguishing 

between the interfaces that they provide and use. 
Demanding that components should have two kinds of 

interfaces clearly separates them from objects, since 
objects also interact through interfaces, can separate 
interfaces from implementation by using interfaces or 
abstract classes and inheritance, and support 
composability by, for example, using pointers to each 
other.  Often a part of an interface that expresses the 
connectivity of the component is called a port.  Provides-
port is a set of methods that are provided by the 
component, i.e. can be called by other components who 
have a matching Uses-port, expressing the needs of these 
components in this functionality. 

As an example illustrating ports roles, lets consider an 
application that advances a variable obeying a non-linear 
diffusion equation: 

(x, t)

t
=

x
D( ,x)

x

 

 
 

 

 
 
 

To solve this equation we introduce three components.  
The Driver/State component keeps the current value of t 
and the current value of  as a function of x.  The Solver 
component knows how to advance  from moment t to 
t+dt given the value of D.  The Transport component 
knows how to calculate D given x and .  Hence the 
advancement of  can be then presented as composition of 
these components shown on Figure 3. Driver asks Solver 
to Advance by dt and passes dt and the state: the value of 

.  Within the Advance call, Solver invokes Eval 
Transport port of Transport to evaluate diffusion 
coefficient D using current , and then calculates new .  
This new value is then returned by the Advance method 
to Driver.   

 Figure 3:  Three components connected to form an 
executable for solving a diffusion equation.  A blue 
section on the left side of each component represents a 
Provides-port, and the yellow part on the right represents 
a Uses-port.  The Green Go port is specific for the driver 
component that starts the execution. 

Why one would want use such components rather then 
implementing a sequence of steps?  The advantage 
transpires only if one would like to use multiple 
implementations of such components communicating 
through the same Advance and Eval Transport ports.  
Designed correctly, these ports could be used as standard 
connectors between multiple solvers and various transport 
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Data Access Throughput over WAN
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Data Access Throughput over ESNET
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Figure 2: Data access throughput versus the size of 
transferred data for LAN, ESnet and WAN setups.  
H5WS is a short name for the Fusion Grid Service. 
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models with varying implementations. One then can have 
multiple combinations of them – each new combination 
affecting only a subset of components.   For example, one 
can have multiple models for anomalous transport in 
tokamaks and use solvers with different discretizarion 
schemes and implicitness.  

In addition to the component requirements listed above, 
it is desirable that components: 
• support multiple languages; 
• support High Performance Computing (HPC); 
• allow remote invocation. 
Multilanguage support additionally separates 

components from object-oriented models and is needed 
for development of integrated simulations combining 
modern and legacy components written in different 
languages.  The requirement for remote invocation comes 
from the need to support distributed computing as many 
applications need to run on distributed data and separate 
the compute-intensive “solving” part running remotely 
from a less demanding data analysis running locally.  

Industry has recognized the benefits of the component 
approach a long time ago.  Examples are Java Beans and 
COM components. But since the needs of commercial 
applications differ from the needs of scientific computing, 
Java Beans and COM components do not satisfy all our 
requirements.  For example, neither model supports two 
kinds of interfaces.  Also, Java Beans are language 
specific, while COM is platform specific and primarily 
for C/C++.  They do support remote invocation, but are 
seldom used for HPC applications.  

Of all the commercial products, CORBA Component 
Model (CCM) [8] is the closest to support our component 
definition.  In fact, the CCM specification does satisfy all 
the required and two of the desirable requirements listed 
above - multilanguage support and remote invocations.  
But while many CORBA implementations provide 
support for Java, C++ and Python and CORBA objects 
(different from components) written in various languages 
can interoperate, there are too few implementations of 
CCM, and in reality they support either C++ or Java, thus 
not allowing components in many languages.   Moreover, 
none of CORBA implementations supports Fortran, 
which is heavily used in scientific computing.  Finally, 
CORBA is seldom used in HPC applications. 

Due to the limitations of commercial components, 
several scientific components frameworks have been 
developed that addressed some of the limitations.  The 
domain-specific ESMF [9] and SWMF [10], for example, 
are high performance frameworks, but do not support 
multiple languages (only C++ and F90, respectively).  
Moreover, their interfaces do not discriminate between 
Provides and Uses types.   Finally, they do not support 
remote invocations. 

The most promising and well-developed scientific 
component framework is the Common Component 
Architecture (CCA) [11].  CCA component model 
satisfies all the requirements of our component definition 
and has strong support from a wide scientific community. 

Language Interoperability Tool Babel  
An integral part of CCA is Babel [12], a language 

interoperability tool that is used to define components, 
generate language mappings for them and provide for 
remote invocations.  Babel uses SIDL (Scientific 
Interface Definition Language) to define interfaces and 
relationships between components. The Babel 
interoperability tool reads the SIDL description and 
generates the necessary “glue” between different 
languages.   The “glue” mostly consists of client stubs and 
server skeletons.  

For example, here is an example of a SIDL definition 
of a function taking double as an argument: 

 
package newPackage version 1.0{ 
 class newClass{ 
  void doWork(inout double varX ); 
 } 
}; 

Imagine that we want to call F90 from C++.  Then we 
use Babel to generate a C++ client stub and a F90 
skeleton.  The relevant part of the C++ client stub will 
look like:  

 
namespace newPackage{ 
 class newClass{ 
  public: 
    void doWork (double& varX); 
 }; 
}; 

The Fortran 90 implementation is done by inserting the 
logic into the server skeleton: 

 
recursive subroutine 
 newPackage_newClass_doWork_mi 
 (self, varX, exception) 
!Implementation goes here 
end subroutine newPackage_newClass_doWork_mi 

Then in the main program one can call the C++ client 
as follows:  

main(){ 
  newPackage::newClass B =  
 newPackage::newClass::_create( ); 
 B.doWork(5.);  
} 

The same SIDL interface defined above can be used for 
making remote calls between various languages.  In this 
case one needs to start a server process that runs Babel’s 
ORB on a particular port and creates the worker object.  
The client than needs to specify the host and the port to 
access the object.  In Java, this will look as follows. 

 
public static void main (String args []) { 
Sidl.rmi.ProtocolFactory.addProtocol 
  ("simplehandle",     
   "simple.rmi.SimHandle"); 
newPackage.newClass obj =  
  newPackage.newClass.connect   
    ("simhandle://hostname:9000/1000");  
obj.doWork (100.0); 

}  

One can specify different choices of the client and 
server languages.  Currently, the Babel language bindings 
include Fortran 77, Fortran 90, C, C++, Python, and Java. 
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Babel is implemented very efficiently.  Before we 
decided to use it in our projects we performed 
performance comparison between Babel and a standard 
F2003 mechanism for interoperating with C 
(ISO_C_BINDING module).  From these tests we 
concluded that using Babel should have a very small 
overhead for our mixed language applications.  The 
results of one such test is shown on Figure 4.   

 

 
The role of Babel will be growing as many scientific 

disciplines strive to provide comprehensive modeling of 
various phenomena and need to mix many codes written 
in various languages in one application. To do this, 
scientists first needs to standardize the interfaces of 
conceptually similar modules, express them using some 
common language and provide some “glue” allowing 
their integration.  All this can be done by Babel. 

Use of Components in Fusion Applications 
An example of a discipline that started looking at 

components in order to unify interfaces and develop 
complex applications is fusion theory.  Its current thrust is 
to provide integrated modeling of tokamaks.  In 2006, two 
SciDAC projects, SWIM (Center for Simulation of RF 
Wave Interactions with Magnetohydrodynamics) [13] and 
CPES [14] (the Center for Plasma Edge Simulation0, 
were funded.  In 2007, another integrating SciDAC 
project, lead by Tech-X Corporation, FACETS [15] (the 
Framework Application for Core-Edge Transport 
Simulations) started.  

Since migration to components is not simple and 
requires a lot of learning and a paradigm shift, all projects 
at the moment use a much weaker definition of 
component than the one defined above.  For example, 
SWIM provides Python wrappers with standard interfaces 
for each code involved in their integration and uses files 
exchange for modules integration. FACETS project uses 
standard C++ interfaces to define its modules.  It strives 
for the high performance in the beginning and supports 
data exchange in memory rather than using files.   That is 

why FACETS uses Babel for calls from its C++ 
framework to the legacy modules transport, wall and edge 
modules implemented as Fortran, C, and C++ libraries 
with the interfaces standardized between types (Figure 5). 
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Figure 5:  FACETS uses Babel to call legacy modules 
from the C++ framework. 

 
All three projects might unite in the upcoming Fusion 

Simulation project some time next year and hopefully will 
merge with the components technologies as the work 
progresses and the technologies mature. 
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Figure 4:  Comparison of performance of Babel and 
F2003 ISO_BINDING_C module.  The graph shows the 
time for an individual call from C to Fortran versus the 
number of scalar arguments.  
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