
ELEMENTS OF CONTROL SYSTEM LONGEVITY

Stephen A. Lewis, SLAC, Menlo Park, CA 94025, U.S.A.

Abstract
We build controls for long-lived facilities. What are the

essential architectural elements that are likely to give any
particular approach a long tenure? Many aspects can eas-
ily be identified by their negative value, such as: depend-
ence on particular languages, operating systems, or hard-
ware. I will argue here that the fundamental positive
aspect that gives the greatest endurance is “decoupling,
decoupling, decoupling.” The principle of decoupling
applies in many contexts. I will attempt to show that
among the key contributors to achieving this desired state
are very stable, very narrow ‘intellectual’ bottlenecks at
appropriate levels; decentralization; and the use of asyn-
chronous communication.

LONG TENURE
We design, build, and maintain control systems that are

often specified to last 30 years. Many of them have lasted
that long and far longer. But in ‘computer years,’ 30 years
span many technical generations. Thus, we should con-
sider in the design phase how to mitigate the cost, effort,
and even disruption that follow the inevitable need to
upgrade. If you are tasked with a first version of your
control system to test the first stage of a 5-year construc-
tion project, you could be doing your first upgrade before
facility is commissioned! In the end, it will not be the
qualities of the components that fails you: it will be the
dependencies among them.

I am guided in my following remarks by two aphorisms
that my own personal history has given much credence to:

 “In theory, there is no difference between theory
and practice. But in practice, there is.”[1]

 “Success comes from experience; but experience
comes from failure.”[2]

PITFALLS
Many of these topics, although technical, carry a heavy

emotional burden. One such topic that I won’t specifically
address is proprietary vs. open-source choices—the issues
are too complex and open-ended for this paper.

Language
The choice of programming language is often based on

very abstract or conceptual concerns. In our industry,
however, the language du jour is quickly replaced by an-
other. And so the short-term developer’s joy of having
that special language is soon replaced by the long-term
need to find trained maintenance programmers, compilers
for current hardware and OS platforms, and the graphics,
communications, and mathematical libraries for all the
functionality your site depends on. You do have to select
one or a few languages, so avoid depending on features
that do not have equivalents in other ‘main-stream’ lan-

guages. But language choice is much less important if the
total code size can be significantly reduced (see Require-
ments below).

The language topic, nowadays, always brings up the
question of choosing an Interactive Development Envi-
ronment (IDE). Certainly, if you are going to aggressively
develop and maintain mega-code, you are going to need
all the help you can get. On the other hand, almost no
aspect of modern software practice seems more volatile
than the IDE area. The particular danger to avoid is to
find out that no compatible combination of that IDE and
your new language, operating system, and host hardware
exists.

Operating System
Discussions about different operating system have of-

ten been described as ‘religious wars.’ Like programming
languages, operating systems come and go. Finding ex-
perts to keep an ancient OS going is hard, and an ancient
OS typically requires old hardware—and a store-room of
spare parts.

In addition to selecting features that are generally sup-
plied in a typical OS (especially in the real-time area), an
excellent practice is to provide a thin ‘glue’ layer between
local code and the OS services.

Transport
The transport or ‘middle-ware’ elements of a control

system form its back-bone. Hence its features, and effi-
ciency (or lack thereof) can make or break the scalability
of the entire installation. These days, most are built upon
the socket interface to TCP/IP and so ultimate portability is
not the driving issue. Perhaps a greater pitfall is the case
where it distorts your architecture (see Asynchronous,
below).

Concepts such as name discovery, graceful failure and
recovery, congestion controls, and so forth are best de-
fined independently and then carefully ‘mapped’ onto the
underlying services. This choice must also be carefully
coordinated with the choice of wire protocol, discussed
further below.

Hardware
Hardware has undergone perhaps the most dramatic

changes during the four decades we have been building
control systems: from mainframe, to minicomputer, to
workstation and crate, to ‘smart’ device. The network has
changed to keep pace: from a stand-alone computer sys-
tems, to a simple point-to-point star or ring, to a local area
network, to a ‘cloud’ of switches and routers. The number
of layers has varied between one and three.

For crates, the ‘bus wars’ have never truly abated:
CAMAC; Multibus I and II; VME; and now ATCA and Mi-

FOPA04 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Control System Evolution

736

croTCA, to name a few, will likely be mixed in many
systems.

With care, I think you can mix stages with different
numbers of layers and so evolve gracefully. The key is
not to assume too much about how various entities are
distributed in layers (and see Layers and Wire Protocol
below).

Institutional Aspects
We build our systems in an institutional matrix. Its cul-

ture can intrude on our design choices. My personal and
anecdotal observation is that there is a strong tendency to
follow the organization chart in the overall topology—
hence the popularity of ‘manager’ or ‘supervisor’ or ‘di-
rector’ entities, sited just where their human counterparts
would be in the block diagram. I prefer a more ‘direct-
connection’ model (see Decentralization below).

Operating system and platform choices are often highly
constrained by institutional standards and practice (at
least by its IT department); my advice is to make your
technical case and fight very hard. Your needs will follow
the slowly changing facility control needs, whereas the
institutional constraints will follow the rapidly changing
regulatory, funding, and senior management rules—quite
a mismatch.

DECOUPLING
It is the interplay of assumptions, constraints, and de-

sign choices that can make an upgrade onerous. The anti-
dote, I assert, is decoupling. (A close relative of decou-
pling is decentralization; see that below.) Decoupling
comes in many forms…

Layers
Do you know where your layers are? An architecture

with separate communicating entities does not automati-
cally have layers; and you can have entities with dual
roles (say, publisher and subscriber) but still have layers. I
think of it as the ‘one layer/one protocol’ rule: you are
doing it right if the one protocol you need to connect two
entities is obvious. But there can be too much of good
thing: certainly no more than a few protocols should work
(and see Wire Protocol for why you can have fewer than
you might think).

Technical
I refer here to the absence of a ‘ripple’ effect: a change

in one layer should ideally have no effect on the layers
above and below it—and the more dynamic the process is
(the later the binding), the better. With care, you can sup-
port multiple versions both vertically (old callers can in-
teroperate with a new callees), and horizontally (allows
mixed versions in a layer).

Social
Social decoupling refers to situations where software

developers and maintainers, controls system users (such
as operators, technicians, engineers, physicists), and even

managers, can go about their duties once they have
learned the basic rules. Although the costs of a highly
coupled system are seldom quantified, they are evident in
the great reluctance to change anything because so many
different classes of people who interact with the control
system can’t or won’t accept the perceived costs.

Requirements
Simply put, don’t try to turn a 1000-page requirements

document into 2 million lines of ‘traceable’ code. The
requirements you will have early enough to meet the
schedule will be mostly invalid by the time you finish.
Some practitioners estimate that as little as 4% of the re-
quirements are stated upfront [3]; in fact, most are im-
plicit. A more promising approach is to build a collection
of reusable building blocks and then track the require-
ments by changing the parameters and interconnections
among them—a combinatorial bonanza. This might
eliminate the necessity of mega-code.

KEY 1: ‘BOTTLENECKS’
It may seem contradictory to suggest that a bottleneck

is beneficial in a control system (and I will make the case
against the traditional bottleneck below); but I am refer-
ring here to intellectual bottlenecks: choosing critical
places in the design and implementation where you can
use a ‘narrow’ rather than a ‘wide’ approach.

Wire Protocol: I
The ‘wire’ protocol and its associated Applications Pro-

gramming Interface (API) is what the middle-ware must
implement in our current ‘publish/subscribe’ or ‘cli-
ent/server’ paradigm

The ‘wide’ version appears to provide a boundless fu-
ture of more and better functionality; and initially it al-
lows many parallel activities as each work-group refines
how its communicating entities are used. Yet ultimately, I
believe, it becomes more and more burdensome for two
main reasons.

First, the intellectual challenge of quickly and correctly
choosing all the right ‘calls’ from the vast number offered
actually reduces productivity—especially for new or oc-
casional developers—and leads to fewer and fewer reus-
able patterns. And when the inevitable follow-on phases
occur the burden on every caller to adapt to the added or
changed syntax and semantics of every callee will be al-
most unmanageable (‘version hell’). This is only exacer-
bated by the parallel work-group activity so useful at first.

Second, a wide protocol/API practically stymies any
straight-forward implementation of ‘tools,’ that is, generic
client or subscriber applications. Because the ‘narrow’
API seldom changes (and may even support older ver-
sions concurrently), a tool-style application is mostly de-
coupled from the versioning process: unlike its ‘wide’
counterpart, it does not have to track the ever-growing
(and ever-changing) ‘sea of devices’ that any successful
facility will be adding and replacing as the physics and
technology demand.

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA FOPA04

Control System Evolution

737

Don’t underestimate the multiple benefits here: the tool
maintainers don’t really need much knowledge of the
devices; the device experts don’t need to tell the tool
maintainers what they are up to; and the tool users (opera-
tors, technicians…even managers) are experts in using the
tools (which are quite stable) and can go about their busi-
ness with minimal interaction with either group. (This is a
nice form of social decoupling.)

Wire Protocol: II
Consider an architecture in which a chain of communi-

cation might exist: an entity that drives a sequencing op-
eration might depend on a data manipulating entity which
in turn depends on basic sensor/actuator entities. This
means there are three layers and two protocols, right? No.

With some care, a single protocol is enough. Essen-
tially, client/subscriber entities can also be
server/publisher entities and reuse the protocol. An appar-
ent side-effect that in fact becomes an enormous benefit is
that all of the ‘observers’ that will aggregate around such
working chains—synoptic panels, data loggers, alarm
notifiers, etc.—can be the same single-narrow-protocol
tools previously referred to.

But let’s carry that logic one step farther: resist the
temptation to embellish the client/subscriber tools; keep
them as ‘thin’ as possible. For example, do not add fea-
tures to allow data calculations within a synoptic client.
Instead, use or create a general entity that can parse useful
formulas, subscribe to the inputs and publish the output.
(Instances of such entities can exist almost anywhere.)
Now, not just the specific instance of the synoptic, but
every instance of every client entity can subscribe to that
new output as just another named item in the ‘sea’ of pub-
lished items. This technique can substantially ‘flatten’ the
logical view of the control system, decoupling it from the
actual distribution of entities. Such an approach can make
even sweeping re-organizations of where functionality is
deployed transparent. I recommend using this very pow-
erful approach when implementing Manager, Supervisor
or Director entities, despite the initial tendency to give
them ‘special’ protocols.

File Protocol
I think the best approach here is two-fold: first, ‘buffer’

to a real file any stages in which large amounts of rela-
tively ‘slow-moving’ data are being moved (such as
startup parameters or snap-shots); second, use a clean text
(ASCII) representation.

This very strong decoupling in time and format gives
you many advantages: you can implement and test the
producer or consumer side in any order; you can inspect
and/or generate both valid and invalid data using the sim-
ple text tools at hand; you can easily keep any or all of the
samples in a code repository along with its code; you may
be able to ‘ride through’ a failure of the off-line part of
the food chain during critical operations until a repair is
complete.

Ideally, one representation (say, XML) can fill all re-
quirements.

KEY 2: DECENTRALIZATION
Decentralization is key for two reasons: it avoids any

single point of failure (graceful degradation); it avoids
scaling problems as the load or complexity of the overall
system grows; it is a natural way to introduce new ver-
sions in any layer; and it reduces the likelihood of cascad-
ing failures (and see Asynchronous below).

Consider using a ‘gateway’ as an extreme form of de-
centralization. I mean by this term a dual subscriber-
publisher entity that sits astride two controls domains, and
selectively ‘relays’ transactions. Useful attributes here
are: allow ‘aliasing’ to bridge conflicting naming conven-
tions; enforce ‘throttling’ to prevent busy systems from
overloading their neighbors; add additional access rights
such as ‘read-only.’ Finally, should an upgrade at some
point entail a shift to a new protocol that is no longer in-
teroperable, a gateway can become a protocol converter
(bridge), allowing a phased cut-over.

Location independence is generally considered neces-
sary for decoupling: only ‘tags’ (names) should used for
the rendezvous between communicants. By implementing
it with a dynamic ‘discovery’ protocol or a distributed
protocol (like DNS) then decentralization can be pre-
served.

KEY 3: ASYNCHRONOUS
COMMUNICATION

Synchronous (blocking) communications require deep
understanding of the larger network of dynamic connec-
tions that can occur, and many assumptions about time
that cannot be really known and are subject to change as
portions of the system are replaced with much faster
hardware or the scale of the system grows with time.
When there are three or more entities in a wait-for-
response chain, they are likely to ‘lock-up’. Failure of an
intermediate link in the chain requires nearly heroic
measures to devise a recovery scheme—sometimes a sys-
tem restart is the only recourse.

Asynchronous (non-blocking) communications can
eliminate these systemic failure modes if correctly im-
plemented. Message queuing also provides an easier path
to inserting ‘taps’ to monitor the protocol traffic.

CONCLUSION
By using decoupling, decentralization, narrow proto-

cols, a flat logical topology, and asynchronous communi-
cations, the goals of better scalability, graceful run-time
degradation, and uneventful upgrades with changing re-
quirements can all be more easily achieved without heroic
measures.

REFERENCES
[1] Variously attributed to Jan L. A. van de Snepscheut

and Yogi Berra
[2] Usually attributed to Mark Twain.
[3] R. L. Glass, “Practical Programmer,” Comm. ACM

45(11), Nov. 2002, p. 19.

FOPA04 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Control System Evolution

738

