
THE TINE CONTROL SYSTEM, OVERVIEW AND STATUS
Piotr Bartkiewicz, Philip Duval, Steve Herb, Honggong Wu

Abstract
TINE (Three-fold Integrated Networking Environment)

has been the Control System in use at HERA for some
time, plays a major role in the Pre-accelerators at DESY,
DORIS, FLASH, PITZ (Zeuthen), EMBL-Hamburg,
GKSS-Hamburg, PF Beamline (KEK), and is the
designated control system for the new third-generation
light source PETRA3. TINE has always emphasized both
performance and flexibility. For instance, using the
multicast capabilities of TINE, state-of-the-art, near real-
time video transmission is possible. At the same time,
developers have a large toolkit and variety of software
solutions at their disposal, and in general on their favorite
platform and programming language. Code-generation
wizards are available for rapid development of TINE
servers, whereas intelligent GUI components such as
ACOP aid in the development of either “rich” or “simple”
client applications. The most recent major release brought
with it a bundle of new features and improvements. We
give here an overview of the TINE control system in
general, what’s new in particular, and focus on those
features not available in other mainstream control
systems, such as EPICS or TANGO.

INTRODUCTION
Historically, TINE [1] is a spin-off of the ISOLDE

Control System [2] circa 1991/1992. Although originally
PC-based it was soon ported to UNIX workstations,
VxWorks, and VMS and has undergone continuous
development (primarily at DESY, Hamburg) as well as
ports to other platforms ever since. From the word “go” it
was designed to handle the needs of a large and
complicated machine, namely HERA. With well over
100,000 addressable control points and close to 200
device servers, HERA had to deal with issues of
performance and scalability not usually seen in smaller
machines. Although, HERA has been recently
decommissioned, TINE has been shown to be a suitable
choice for smaller accelerator facilities (either ring or
linear) and for beam-line control, and will be the control
system for the 3rd generation light source at PETRA3.
TINE is a mature control system featuring an efficient
control system protocol, a large number of central
services, a device access layer, and a large set of rapid
application development (RAD) tools for both client and
server applications. At the same time, TINE is hardly
“static” in any sense of the word. Indeed the next major
release (4.0) is now available, with a bevy of new features
and functionality.

A general overview of TINE as a control system as well
as recent developments pursuant to TINE Release 4.0 will
be presented in this article.

TINE KERNEL
The TINE kernel, as one might expect from its PC-

based origins (where it fit snugly inside the 540 Kbytes
allowed by DOS applications), has a small footprint. The
kernel is written in the C programming language (as are
most operating systems) with the exception of the TINE
Java port. The data transport is based on Berkeley
sockets, with the distinct advantage that no 3rd-party
software installations (e.g. Sun RPC or CORBA) are
required. TINE manages server name resolution itself via
a TINE Equipment Name Server (ENS) or local caching
files, obviating any need for a 3rd-party database (such as
MySQL). Hence, installing TINE is a very easy and
straightforward task on most operating systems, and
brings with it no requirements for additional software.

Data transfer occurs via UDP by default, but can be
configured to use TCP. If a client/server pair is on the
same host, then pipes or messages are used. Data transfer
payloads can generally be as large as can be allocated
from the available memory (with double-buffering
constraints).

The TINE Kernel can run either in single-threaded
mode or in multi-threaded mode (where threads are
available). Within a multi-threaded TINE kernel, internal
processes can be configured to run on separate threads or
not. This will include, calls to an equipment module
handler, background i/o, schedulers, etc. The default
configuration uses separate threads for all of these. (As a
caveat however, note that, if properly programmed, a
single-threaded application can frequently be more
efficient, as there are then no context switches, thread
synchronization, or issues of thread-safety to deal with).

TINE PROTOCOL
The TINE protocol allows data transfer according to

one of four different paradigms, either separately or in
combination. It is here that TINE distinguishes itself
from other main-stream control systems. And it is here
that TINE offers ready solutions for scaling the control
system to large machines the size of HERA, without
sacrificing accessibility. The first two data transport
paradigms are familiar and are briefly listed here as
“client-server” (i.e. synchronous transaction) and
“publisher-subscriber” (i.e. asynchronous event
notification). Both of these mechanisms inherently imply
uni-cast (peer-to-peer) data transfer. In addition, TINE
offers a “producer-consumer” mode of transfer, where
control system data deemed of interest to most control
system elements (e.g. beam energy) are multi-casted from
a single source, regardless of the number of interested
consumers. A fourth alternative is hybrid of the last two,
a “producer-subscriber” mode, whereby subscribers

Stefan Weisse, DESY Zeuthen, Germany
, DESY, Hamburg, Germany

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA FOPA03

Control System Evolution

733

inform a server of their wishes, and the server (producer)
multi-casts the results to his multicast group. Any
number of clients can then make the identical request with
no extra load on either the server or the network.

This fourth alternative is an excellent way to send large
payloads (such as video frames) to a large number of
listening clients.

Furthermore, TINE offers the ability for a server to
send data upon event by explicitly calling the kernel
scheduler. Typically, asynchronous event notification on
the client-side involves polling the data channel of
interest locally on the server, and transmitting the results
on change or timer. This server-side polling can itself be
made redundant if the server calls the scheduler when it
knows that there is a reason to examine the channel’s data
(e.g. the server has just finished its i/o cycle or it has been
triggered externally).

Data Types
TINE offers a wide variety of data types including all

primitive types, as well as compound types consisting of
data pairs (e.g. a float-int pair), data triplets, data
quadruplets, fixed-length names, and again distinguishing
itself from other control systems, TINE offers user-
defined “tagged” structures. Tagged structures are
defined by the developer, given a name (the “tag”) and
registered at the server and client. Tagged structures
provide a very useful way of transmitting simple data
objects, whose fields belong together, as an atomic unit.

Data types new to TINE Release 4.0 include an XML
type, a BITFIELD type (where individual bits or groups
of bits can be addressed by name), and a VIDEO data
type (whereby a system-defined video header is sent with
each video frame).

Application Programmers Interface
TINE offers several APIs depending on the application

platform in question and the skills of the application
programmer. Fundamentally, TINE is once again distinct
from other control systems in that it recognizes at the API
level that the data transfer is occurring between remote
endpoints and offers parameters to the programmer for
adjusting performance and scalability. For instance in the
asynchronous interface, the ‘kind’ of monitor (on
‘change’, on ‘timer’, on ‘event’, etc.) requested can be
specified, along with the ‘scope’ of the monitor (send as
multicast, use TCP, etc.). And as of TINE Release 4.0,
the transfer reason can determined upon receipt by a
client (e.g. ‘response’, ‘event’, ‘heartbeat’, ‘timer’, ‘data
stale’, etc.).

To be sure, many of these capabilities are of interest
only to the professional programmer. TINE also offers far
simpler client and server interfaces (which make default
decisions) for part-time programmers.

In addition, TINE offers client and server APIs for
LabView and MatLab, as well as a command line
interface, which can be used in scripting languages,

ActiveX controls, which can be used in Windows
applications supporting ActiveX, and Java beans, namely
the ACOP family of beans [3]. .Net controls are in
progress.

TINE NAMING SERVICES
TINE has a hierarchical naming scheme common to

other control systems, consisting of 3 levels of
identification in specifying a device. In TINE these are
known as ‘context’, ‘device server’ (or ‘device group’)
and ‘device name’. The attribute, command, or action
requested from the device is given by a ‘property’. In
addition, a server’s subsystem is also known and
browseable from the ENS, but is not part of the name
space. What is worth noting here is the distinction
between ‘device server’ and ‘device group’.

In a purely engineering point of view, the device server
refers to a single host computer connected to its devices.
In a machine physicist/operator point of view, one tends
to think of a device group, say, Magnets, where the
devices refer to all the magnet power supply controllers,
regardless of whether they are attached to a single host
computer or not.

In TINE one can effectively have both views by making
use of device redirection, where a device group will
appear in any control system browser and be addressable
as a logical server. Accessing a particular device will then
be redirected to the correct physical host managing the
device. Accessing a range of devices from a device group
(via wildcards, for instance) will also correctly determine
where the constituents reside.

As of release 4.0, TINE allows context and
server/group names up to 32 bytes and device and
property names up to 64 bytes. This is usually well
beyond the needs of typical ansi-character encoded names
and should also easily be sufficient to handle uni-coded
names. The TINE names used in this hierarchy are now
case insensitive.

Also new in release 4.0 concerning naming services is a
local dynamic address cache on all client machines with a
disk. Typically a TINE site will have 2 ENS servers
running, a primary and a secondary. In a scenario where
neither ENS can be reached for whatever reason, a
starting client application has in the past looked for a
static and possibly dated address file located on disk as a
fallback. With Release 4.0, all client applications will
update a dynamic address cache upon acquiring a server’s
address from the ENS.

HARDWARE DEVICE ACCESS
TINE offers hardware device access via several means.

In many cases, the server side API is easy enough to learn
that a simple ‘do-it-yourself’ approach is a good way to
go, for instance when a piece of hardware is purchased
which comes with drivers and API. One can also
leverage the LabView drivers by using them and making

FOPA03 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Control System Evolution

734

use of the TINE LabView server VIs. Likewise EPICS
[4] drivers can be used by running Epics2Tine [5] on an
EPICS ioc.

TINE itself makes use of the Common Device Interface
(CDI) [6] which itself is a powerful, plug-and-play device
layer offering a portal to the attached hardware. From a
server process, the hardware is essentially accessed using
the TINE client API, using ‘localhost’ and ‘cdi’ for
context and device group. The devices are the named
devices from the CDI database and properties refer to
either bus actions or information. For each new kind of
hardware, a CDI bus plug needs to be provided, which
defines the interface routines to the bus.

Also available are a bare-bones Network Queue for
interfacing to low level PLC or FPGA controllers, and a
dedicated TINE-CANOpen interface [7].

TINE runs well on embedded controllers such as
PC104 and Altera NIOS, and a port to Windows CE is
well underway.

VIDEO APPLICATIONS
The TINE video system makes use of two of the TINE-

specific protocol features mentioned above to provide
state-of-the art video transmission, namely the publisher-
consumer paradigm (multicasting) to allow as many client
applications as desired and event scheduling to send video
frames immediately after they are grabbed. At the PITZ
facility in Zeuthen, for instance, where rather stringent
video requirements are in play, ½ MByte video frames are
sent in this fashion over a 100 MBit Ethernet at 10 Hertz
to as many clients as desired.

HIGH LEVEL APPLICATIONS
TINE provides a number of Rapid Application

Development (RAD) tools to facilitate writing or
configuring client applications. Most recently the ACOP
family of Java beans has been expanded to incorporate a
large set of displayer widgets capable of browsing the
control system at run-time as well as design-time through
the use of bean customizers [3]. In this way, rich client
Java applications can be easily created via a Java
Integrated Developers Environment (IDE) such as Eclipse
or NetBeans, or simple clients can be assembled at run-
time without the need of a heavy framework. Similarly,
there is a large set of TINE Virtual Instruments (VIs)
which can be used in LabView applications. Although
the ACOP ActiveX [8] control can also be used in .NET
applications, it represents a legacy technology and to this
end, an effort to provide ACOP .NET controls is also
underway. A MatLab API is also available.

TINE web applications can likewise be assembled
quickly via the Web-based Controls Client (Web2c)
toolkit [9], which is an AJAXian framework for creating
thin clients. Such web applications have the advantage of
being accessible anywhere, without firewall
considerations.

CONNECTIVITY TO OTHER SYSTEMS
To make use of all the server-side TINE features

alluded to above (e.g. event scheduling) it is prudent to
use native TINE servers. Nonetheless, most features
(such as multicasting) are readily available by providing a
TINE server acting as a translation service for other
control system elements. In the case of EPICS elements,
the epics2tine [5] translator can either run practically
embedded on any EPICS ioc, or run in parallel on a soft-
ioc. Essentially, it bypasses the channel access protocol
completely and runs EPICS over TINE. In the case of
TANGO [10] elements, the tango2tine translator runs
only as a separate process. This is also true for the
STARS/COACK bridge [11].

DOOCS [12] elements on the other hand can be seen as
pure TINE elements, as TINE is embedded in DOOCS.

CONCLUSION
TINE is a mature control system which is at the same

time keeping pace with technological advances in many
areas, including web technology and RAD tools. The
TINE kernel has a very small footprint compared to other
systems, has no 3rd party dependencies, and can provide
high performance data transmission under extreme
scenarios. To this end it has set the standard for video
transmission via the control system.

REFERENCES
[1] http://tine.desy.de
[2] “A PC Based Control System for the CERN ISOLDE

Separators”, R. Billnge et al, ICALEPCS ’91.
[3] “The ACOP Family of Beans: A Framework

Independent Approach,” J.Bobnar, et al, these
proceedings.

[4] http://aps.anl.gov/epics.
[5] “EPICS to TINE Translator Release 2.0,” P. Duval, et

al., PCaPAC ’05.
[6] “Using the Common Device Interface in TINE,” P.

Duval, et al., PCaPAC ’06.
[7] “Integration of CANOpen-Based Controllers with the

TINE Control System for Petra III”, P. Bartkiewicz,
et al., these proceedings.

[8] “The Use of ACOP Tools in Writing Control System
Software”, I.Deloose, et al. ICALEPS’97.

[9] “A Web Based Control Client Toolkit,” R. Bacher,
these proceedings.

[10] http://www.tango-controls.org
[11] “The Interconnection of TINE and STARS”, T.

Kosuge, PCaPAC ’06.
[12] http://doocs.desy.de

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA FOPA03

Control System Evolution

735

