A   B   C   D   E   F   G   H   I   K   L   M   N   O   P   Q   R   S   T   U   V   W  

impedance

Paper Title Other Keywords Page
WPPB04 Convergence Computer–Communication Methods for Advanced High-Performance Control System controls, monitoring, target, instrumentation 406
 
  • V. I. Vinogradov
    RAS/INR, Moscow
  Based on analysis of advanced computer and communication system architectures, a future control system approach is proposed and discussed in this paper. Convergence computer and communication technologies are moving to high-performance modular system architectures on the basis of high-speed switched interconnections. Multicore processors become more perspective ways to high-performance systems, and traditional parallel bus system architectures are extended by higher-speed serial switched interconnections. Compact modular system on the base of passive 3-4 slots PCI bas with fast switch network interconnection are described as examples of a modern, scalable control system solution, which can be compatible extended to advanced system architecture on the basis of new technologies (ATCA,μTCA). Kombi wired and wireless subnets can be used as effective platforms also for large experimental physics control systems and complex computer automation in an experimental area with human interactions inside systems by IP-phones.  
 
WPPB39 130-MHz, 16-Bit Four-Channel Digitizer target, controls, feedback, factory 475
 
  • R. Akre, T. Straumann, K. D. Kotturi
    SLAC, Menlo Park, California
  The PAD (Phase and Amplitude Detector) was designed to digitize high-speed analog input data with large dynamic range. Because of its high speed and high resolution processing capability, it has been useful to applications beyond measuring phase and amplitude of RF signals and klystron beam voltages. These applications include beam-position monitors, bunch-length monitors, and beam-charge monitors. The digitizer used is the Linear Technologies LTC2208. It was the first 16-bit digitizer chip on the market capable of running at 119MHz; it is specified to run up to 130MHz. For each channel, the 16-bit digitized signal from the LTC2208 is clocked into a 64k sample FIFO. Commercial FIFOs are available that store up to 256k samples in the same package. The data are then read from the FIFO into the Arcturus Coldfire uCDIMM. A CPLD is used to handle triggering, resetting the FIFO, interfacing the Coldfire processor to the 4 FIFOs, and interrupting the Coldfire processor. The processor runs RTEMS version 4.7 and EPICS 3.14.8.2. There is an optional add-on available that attaches to the QSPI port on the PAD for reading 8 slow, 24-bit analog signals.