A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Schissel, D. P.

Paper Title Page
WPPB28 Remote Operation of Large-Scale Fusion Experiments 454
 
  • G. Abla, D. P. Schissel
    GA, San Diego, California
  • T. W. Fredian
    MIT, Cambridge, Massachusetts
  • M. Greenwald, J. A. Stillerman
    MIT/PSFC, Cambridge, Massachusetts
 
  This paper examines the past, present, and future remote operation of large-scale fusion experiments by large, geographically dispersed teams. The fusion community has considerable experience placing remote collaboration tools in the hands of real users. Tools to remotely view operations and control selected instrumentation and analysis tasks were in use as early as 1992 and full remote operation of an entire tokamak experiment was demonstrated in 1996. Today’s experiments invariable involve a mix of local and remote researchers, with sessions routinely led from remote institutions. Currently, the National Fusion Collaboratory Project has created a FusionGrid for secure remote computations and has placed collaborative tools into operating control rooms. Looking toward the future, ITER will be the next major step in the international program. Fusion experiments put a premium on near real-time interactions with data and among members of the team and though ITER will generate more data than current experiments, the greatest challenge will be the provisioning of systems for analyzing, visualizing and assimilating data to support distributed decision making during ITER operation.