A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Moreau, P. H.

Paper Title Page
TOPB02 Improvement of Tore Supra Real Time Processing Capability Using Remote PCs 262
 
  • B. Guillerminet, F. Leroux, D. Molina, N. Ravenel, P. H. Moreau
    EURATOM-CEA, St Paul Lez Durance
 
  The Tore Supra tokamak is the largest superconducting magnetic fusion facility. Its real time measurements and control system is designed to deal with continuous acquisition during the plasma discharge, fast acquisition (sampling frequency up to 4 GHz) and Real Time (RT) data processing. The simultaneous control of an increasing number of plasma parameters aiming at tokamak operations in a fully steady state regime makes fast acquisitions and RT data processing more and more de-manding. The Tore Supra Data Acquisition System (DAS) is based mainly on VME bus acquisition units using Lynx OS 3.1 as operating system. Some units are not able any more to handle in parallel the data flow rate (about 100ko/s increasing up to 6Mo/s during fast acquisition phase) and the RT processing. Furthermore, the time delay between two fast acquisition phases must be reduced to be able to catch fast plasma events. To cope with these needs, the data processing capability has been enhanced while preserving the existing acquisition system. A new DAS layer containing Linux-PC has been implemented. The link between the Lynx-OS layer and the Linux layer is ensured by a 100-Mbps Ethernet link.  
WPPB07 Machine Protection and Advanced Plasma Control in TORE SUPRA Tokamak 412
 
  • S. P. Bremond, J. Bucalossi, G. Martin, P. H. Moreau, F. Saint-Laurent
    EURATOM-CEA, St Paul Lez Durance
 
  A tokamak is a complex device combining many sub-systems. All of them must have high reliability and robustness to operate together. A sub-system includes its own safety protections and a more integrated level of protection to ensure the safety of the full device. Moreover, plasma operation with several megawatts of additional injected power requires a highly reliable and performing control because uncontrolled plasma displacements and off-normal events could seriously damage the in-vessel components. Such an integrated control system is installed on Tore Supra. It can develop an alternative plasma operation strategy when margins to technological sub-system limits become too small. The control switches to more and more degraded modes, from the nominal one to a fast plasma shutdown. When sub-system limits are nearly reached, the system tries to balance the loads over less solicited parts. Then a modification of the plasma parameters is performed to preserve the plasma discharge in a degraded mode. The third step is a soft and controlled plasma shutdown, including a stopping of additional heating systems. When loads are closed to be uncontrolled, a fast plasma shutdown is initiated.