A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Layne, R. A.

Paper Title Page
TOPA01 Data Management at JET with a Look Forward to ITER 74
  • A. J. Capel, N. J. Cook, A. M. Edwards, E. M. Jones, R. A. Layne, D. C. McDonald, M. W. Wheatley, J. W. Farthing
    UKAEA Culham, Culham, Abingdon, Oxon
  • M. Greenwald
    MIT/PSFC, Cambridge, Massachusetts
  • J. B. Lister
    ITER, St Paul lez Durance
  Since the first JET pulse in 1983, the raw data collected per ~40s of plasma discharge (pulse) has roughly followed a Moore's Law-like doubling every 2 years. Today we collect up to ~10GB per pulse, and the total data collected over ~70,000 pulses amounts to ~35TB. Enhancements to JET should result in ~60GB per pulse being collected by 2010. An ongoing challenge is to maintain the pulse repetition rate, data access times, and data security. The mass data store provides storage, archiving, and also the data access methods. JET, like most fusion experiments, provides an MDSplus (http://www.mdsplus.org) access layer on top of its own client-server access. Although ITER will also be a pulsed experiment, the discharge will be ~300-5000s in duration. Data storage and analysis must hence be performed exclusively in real time. The ITER conceptual design proposes a continuous timeline for access to all project data. The JET mass data store will be described together with the planned upgrades required to cater for the increases in data at the end of 2009. The functional requirements for the ITER mass storage system will be described based on the current status of the ITER conceptual design.  
slides icon Slides