A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Kapusta, S.

Paper Title Page
TOAB03 ALICE Control System – Ready for LHC Operation 65
 
  • A. Augustinus, M. Boccioli, P. Ch. Chochula, S. Kapusta, P. Rosinsky, C. Torcato de Matos, L. W. Wallet, L. S. Jirden
    CERN, Geneva
  • G. De Cataldo, M. Nitti
    INFN-Bari, Bari
 
  ALICE is one of the four LHC experiments presently being built at CERN and due to start operations by the end of 2007. The experiment is being built by a very large worldwide collaboration; about 1000 collaborators and 85 institutes are participating. The construction and operation of the experiment pose many technical and managerial problems, and this also applies to the design, implementation, and operation of the control system. The control system is technically challenging, representing a major increase in terms of size and complexity with respect to previous-generation systems, and the managerial issues are of prime importance due to the widely scattered contributions. This paper is intended to give an overview of the status of the control system. It will describe the overall structure and give some examples of chosen controls solutions, and it will highlight how technical and managerial challenges have been met. The paper will also describe how the various subsystems are integrated to form a coherent control system, and it will finally give some hints on the first experiences and an outlook of the forthcoming operation.  
RPPA36 Handling Large Data Amounts in ALICE DCS 591
 
  • A. Augustinus, L. S. Jirden, S. Kapusta, P. Rosinsky, P. Ch. Chochula
    CERN, Geneva
 
  The amount of control data to be handled by the ALICE experiment at CERN is by a magnitude larger than in previous-generation experiments. Some 18 detectors, 130 subsystems, and 100,000 control channels need to be configured, controlled, and archived in normal operation. During the configuration phase several Gigabytes of data are written to devices, and during stable operations some 1,000 values per second are written to archival. The peak load for the archival is estimated to 150,000 changes/s. Data is also continuously exchanged with several external systems, and the system should be able to operate unattended and fully independent from any external resources. Much care has been taken in the design to fulfill the requirements, and this report will describe the solutions implemented. The data flow and the various components will be described as well as the data exchange mechanisms and the interfaces to the external systems. Some emphasis will also be given to data reduction and filtering mechanisms that have been implemented in order to keep the archive within maintainable margins.