A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Hirono, T.

Paper Title Page
TOAA03 Status of the X-Ray FEL Control System at SPring-8 50
 
  • T. Hirono, N. Hosoda, M. Ishii, T. Masuda, T. Matsushita, T. Ohata, M. T. Takeuchi, R. Tanaka, A. Yamashita
    JASRI/SPring-8, Hyogo-ken
  • M. K. Kitamura, H. Maesaka, Y. Otake, K. Shirasawa
    RIKEN Spring-8 Harima, Hyogo
  • T. Fukui
    RIKEN, Hyogo
 
  The X-ray FEL project at SPring-8 aims to build an X-ray lasing facility, which will generate brilliant coherent X-ray beams with wavelength of below 0.1nm. A combination of short-period in-vacuum undulators and an 8GeV high-gradient C-band linear accelerator makes the machine compact enough to fit into the SPring-8 1km-long beamline space. The machine commissioning will be started by March 2011. We designed the control system for the new machine based on the present SCSS test accelerator, which employs the MADOCA framework. The control system is based on the so-called “standard model” and composed of Linux-based operator consoles, database servers, Gigabit Ethernet, VMEbus system, and so on. The control system, also, has a synchronized data-taking scheme to achieve beam-based optics tuning. Most of the device control part is installed in water-cooled 19in. racks together with RF devices for temperature control, which guarantees stable RF phase control. This paper gives an overview of the project and describes the design of the control system. In addition, we briefly report the status of the SCSS test accelerator operated as a VUV-FEL user facility.  
slides icon Slides  
WPPB13 Development of Flexible and Logic-Reconfigurable VME Boards 427
 
  • T. Kudo, T. Ohata, T. Hirono
    JASRI/SPring-8, Hyogo-ken
 
  We developed a logic-reconfigurable VME board with high flexibility. The board has two parts, a base board and two IO daughter boards. The base board has a field programmable gate arrays (FPGA) chip for execution of user logic, such as a digital low-pass filter or calculation of the median of a spot image. Users can install their logics into the FPGA via VME bus. The IO daughter boards are simple IO modules such as analog inputs/outputs (AIOs) or digital inputs/outputs (DIOs). The data from the IO board is sent to the base board and processed there. As the IO daughter board is separated physically, the user can customize the VME board by choosing daughter boards and does not need to develop whole device. We have developed DIO, AIO, and Camera Link interface as the IO daughter board. In the presentation, design concept and implementation of this VME board are shown with some applications.