
A PROPOSAL FOR MODELING THE CONTROL SYSTEM FOR THE
SPANISH LIGHT SOURCE IN UML

D. Beltran*, LLS, Barcelona, Spain
M. Gonzalez, CERN, Geneva, Switzerlan

Abstract
CELLS (Consorcio para la construcción, equipamiento

y explotación del Laboratorio de Luz Sincrotrón), the first
Spanish synchrotron is now in the latest stages of its
design, previously to its construction. The control system
for this 3rd generation light source is proposed to be done
using software models, and object oriented techniques. In
this paper the main ideas of this methodology are
presented as well as the preliminary ideas of the
development process for the Spanish synchrotron control
system, with its analysis and design models. In this
methodology the user requirements are captured with the
use-case diagrams and specified by the activity diagrams.
The design models are realized by the class diagrams for
the static structure and the sequence diagrams and state
machines for the dynamic structure. The first ideas for the
architecture are also presented, as well as the software
organization in packages. Also, a prototype for a detector
data acquisition system using this methodology has been
developed, and the experiences are also described. Finally
the advantages of this methodology are discussed.

THE SPANISH LIGHT SOURCE
The first Spanish synchrotron radiation facility [1] has

been approved, and it will be built in the area of
Cerdanyola del Valles (Barcelona), Catalunya, Spain.
This synchrotron is funded by the Spanish Ministry of
Science and Technology and the Generalitat of Catalunya
(Catalan Government) with a 50% contribution from each
party. The construction has just started and, it is expected
that light will be delivered to the beamline users in 2010.

The facility will have the classical layout, with a linear
accelerator, a booster and a storage ring, connected by
two transfer lines. The storage ring will be at least 2.5
GeV in energy, quite possibly 3 GeV, and will have at
least 12 sections for insertion devices. Useful radiation for
photon energies of up to 25 keV is in the design
specifications. The possibility to have nominal energy
injection and mini-beta sections for low gad ID’s is now
under serious consideration. The aim is to achieve
emittances in the 5 nmrad region or better. Note that these
are somewhat better specifications that those initially
presented to the authorities [2] and which formed the
basis of project approval. The capital project
contemplates the building of five beam lines initially,
even though the total possible volume is at least 36
beamlines. The process of defining the scientific and
technical objectives for these first five beam lines has

started through the usual procedure of wide consultation
to the future user community and appropriate experts.

THE DEVELOPMENT PROCESS
For simple systems, it is perfectly feasible for a single

person to sequentially define the whole problem, design,
build the software, and then test the end product.
However, in complex systems, as a light source is, a team
of analysts, designers and programmers will be required
to build the system, and their activities should be
coordinated. In this case a software development process
is needed in order to transform the user requirements into
a software product. Among several processes (extreme
programming [3] or the classical programming, like
PSS05 [4]), we propose the usage of the unified process
[5], which is a process based on a modelling language that
is iterative, architecture centric and use-case driven. It is
organized around four phases: inception, elaboration,
construction and transition. It is further organized around
five workflows:

• Requirements: describes what the system should do

for its users and under what constraints.
• Analysis: analyses the requirements, described in the

previous workflow, by refining and structuring them.
• Design: formulates models that focus on non

functional requirements and the solution domain, and
that prepares for the implementation and test of the
system.

• Implementation: the essential purpose of this
workflow is to implement the system in terms of
components, that is, source code, scripts, binaries,
executables, and the like.

• Test: verifies the result from implementation by
testing each build, as well as final versions of the
system to be released.

This model developed during the unified process

provides a clear understanding of the requirements
between the users and the developers, allows the selection
of a suitable architecture and facilitate the management of
the project. The model provides semantically rich
representations of the software system under
development, it will be used in the communication
between the different groups involved in the project, and
it will be used in the documentation. Furthermore, a good
model of the control system will facilitate its maintenance
and its future upgrades, as well as its testing and
commissioning. Finally, the model will allow the ___

* dbeltran@esrf.fr

Proceedings of ICALEPCS2003, Gyeongju, Korea

264

identification of the risks, and its mitigation before the
point at which they come up in the development process.

The project will be organized in packages in the model
what will ease the assignment of tasks within the team. In
addition, it will allow to clearly specify the parts that
could be subcontracted to external companies. Also, this
organization will ease the software sharing and re-using.

In this paper we present a prototype developed with this
methodology (unified process), following all the
workflows described. The experiences developing this
prototype are described.

For the Spanish facility control system the model itself
is introduced with the use cases and actors. Afterwards
the identified packages and analysis classes are reviewed.

The modelling language: UML
We have created the model in UML [6] (Unified

Modeling Language) because it is an industry-standard
language for specifying, visualizing, constructing, and
documenting the artifacts of software systems. This
language appeared in 1996 by G. Booch, J. Rumbaugh
and I. Jacobson, and it is a merge of several notations
existing at that moment, most notable Booch, OOSE
(Object-Oriented Software Engineering) and OMT
(Object Modeling Technique). Today is of widespread
use in software projects. This language was accepted by
the OMG (Object Management Group) for its
standardization and maintenance.

There are lot of CASE (Computer Aided Software
Engineering)-tools which support UML. We have
evaluated two of them: Umbrello v1.2 [7], an open source
tool running under Linux and Rational Rose v6.5 [8], a
commercial tool running under Windows. We have
decided to develop the project using the second one,
because it is closer to the UML standard (it contains all
the diagrams and their artefacts) and it is more
professional (better finished).

USER REQUIREMENTS CAPTURE
The purpose of this workflow is to drive the

development toward the right system. This is achieved by
describing the system requirements (i.e., the conditions or
capabilities to which the system must conform) well
enough so that an agreement can be reached between the
users (machine physicists and operators) and the
developers on what the system should and should not do.

The requirements are captured in UML by the use-case
diagram, which describes what the system does for each
type of user. In this diagram are two different artifacts:
actors (users) and use-cases (service provided by the
system).

Identifying the actors, we have identified the external
environment of the system. They could be humans
(operators, machine physicists and scientists) or hardware
systems (vacuum devices, diagnostics, magnet power
supplies, etc).

Any use case specifies a sequence of actions, including
variants, that the accelerator control system performs and

that yields an observable result of value to a particular
actor.

The use cases capture the functional requirements of
the facility. But the non functional requirements, such as
performance, availability and security are also present in
the diagram associated either to a particular use case
(tagged value) or with any particular one (note).

Picture 1 presents the main use-case diagram, where the
main uses cases in a synchrotron radiation facility are
presented.

These use cases describe what the control system does
but it does not specify how it does it. Then we have
specified the behaviour of every use case by describing a
flow of events in text: it includes how and when the use
case starts and ends, the basic flow and alternative and
exceptional flows of the behaviour.

The human actors interact with the system using the use
cases, as it is shown in the figure 1. Also the use cases
collaborate with the subsystems (diagnostics, magnet
power supplies, RF, vacuum, timing, facility interlocks,
beamline control, experimental DAQ), although the
connections are not shown in the previous diagram. These
subsystems will talk with the hardware actors.

Figure 1: Main use case diagram.

In this paper we have picked up one of the most
important use cases for a synchrotron (Inject Beam) and
we have developed it with more detail. This is presented
in figure number 2.

This use case incorporates the functionality of three
other use cases (Control Linac, Control Booster and
Control Storage Ring). This is modelled by the
<<include>> relationship.

Proceedings of ICALEPCS2003, Gyeongju, Korea

265

The injection could be done with top-up, which is a
special injection mode. This exceptional behaviour is
modelled by the <<extend>> relationship.

Figure 2: Inject Beam use case diagram.

ANALYSIS MODEL
The analysis workflow refines the use cases (use case

realization) described in the previous diagram, in order to
achieve a more precise understanding of the requirements.
So the analysis model will be created, and it will grow
incrementally as more and more use cases are analysed.
This is a conceptual model, as it is an abstraction of the
system and avoids implementation issues (it is applicable
to several designs).

The next step is to refine the primary way in which the
operator executes the Inject Beam use case. This is done
in the activity diagram (see figure 3), which is essentially
a flowchart, showing flow of control from activity to
activity.

Figure 3: Activity diagram for the Inject Beam use case.

This diagram has different activities executed
sequentially. The activity “Booster state to ON” has a

nested diagram for modelling the waiting for the end of a
certain action (stability of the booster magnet power
supplies), which has a branch to specify an iteration.

This activity diagram presents the main sequence of
actions, although exceptional flow of events (scenarios)
has been specified.

DESIGN
The design model describes the physical realization of

the use cases by focusing on functional and non-
functional requirements, together with other constraints
related to the implementation environment.

Architectural design
The purpose of the architectural design is to define a

structure that will be preserved through the entire
software life cycle. Due to the complexity of the project,
we propose the usage of a layers pattern (see figure 4) that
defines how to organize the design model in layers,
meaning that components in one layer can reference
components only in layers directly below. It reduces
dependencies in that lower layers are not aware of any
details or interfaces in the upper layer. Moreover, it helps
us to identify what to reuse, and it provides a structure to
help us make decisions about what to buy (and
subcontract) or to build ourselves.

Figure 4: Layered architecture.

This system has individual applications at the top
(application-specific layer). Below it, there is the
application-general layer, which contains subsystems [9]
that are not specific to a single application and can be
reused for many different applications within the same
domain. These design subsystems decompose the
implementation work into more manageable pieces
handled by different development teams, possible
concurrently. The architecture of these two layers is
created from the architecturally relevant use cases (as the
Inject Beam is).

The architecture of the lower two layers (framework
and system software) can be established without
considering the details of the use cases. In this approach
are presented the several candidates under study.

Proceedings of ICALEPCS2003, Gyeongju, Korea

266

Design class
Once the design model has been decomposed in more

manageable pieces (design subsystems), we have created
and developed its components: the design classes. They
will be characterized by a static view (class diagram) and
a dynamic one (statechart diagram). In the following the
magnet power supply class with its sub-classes are
presented, which belong to the magnet power supply
subsystem.

The class diagram (see figure 5) shows a set of classes,
interfaces, collaborations and their relationship. It is a
structural diagram to visualize, specify, construct and
document the static aspects of a system.

Figure 5: Magnet power supply class diagram.

This diagram contains an abstract class
(MagnetPowerSupply) with the basic operations and
attributes common to all magnet power supplies. Some of
the operations are defined virtual (as ReadCurrent) so the
implementation will be particular to any sub-class.

Figure 6: DC magnet power supply state machine.

There is a state machine associated with any class. A
state machine is a behaviour that specifies the sequences
of states an object goes though during its lifetime in
response events (or commands), together with its

responses to those events. The state machine is used to
model the internal behaviour of an object, as it is show in
figure 6 for a DC magnet power supply.

This state machine has a composite state (cycling),
where is contained a nested state machine. Also, a guard
condition has been added to indicate the transition that
should be taken from the ON state when the command
“setCurrent” is executed. It takes the value of the internal
attribute “cycleOnSetting” to determine this condition.

We would like to note that this statechart specifies a
machine that runs continuously; there is no final state.

Dynamic view
Now that we have an outline of the design classes

needed to realize the use case, we will describe how their
corresponding design objects interact. This is done using
sequence diagrams containing the participating actors,
design objects, and message transmissions between them.

The messages sent between objects are the public class
methods defined in the in the class diagram: the tool
detects which are the public methods of the class and they
are the only offered. But an object could send a message
to itself. In this case, also the private and protected
methods could be sent.

The picture 7 presents a sequence diagram for the
injection in the storage ring. The objects that participate in
the interaction are at the top, across the X axis, placing
the actor (Operator) that initiates the interaction on the
left, and increasingly more subordinate objects to the
right. The messages sent and received by objects and
actors are placed along the Y axis, in order of increasing
time from top to bottom. The focus of control is a tall,
thin rectangle that shows the period of time which an
object is performing an action. The top of the rectangle is
aligned with the start of the action; the bottom is aligned
with its completion.

Figure 7: Sequence diagram for the injection in the

storage ring.

It represents all the commands sent to the power
supplies and in which order when the operator activates
the injection in the storage ring. Note that for any
message sent by the SRInjection object to the
PulsedPowerSupply objects, these send a message to the

Proceedings of ICALEPCS2003, Gyeongju, Korea

267

equipment through a fieldbus (msg_ack). When the
hardware finishes the action, returns an acknowledgment
to the object sending the message.

DAQ SYSTEM PROTOTYPE
We have developed a data acquisition system (DAQ)

for a gas filled detector following the unified process
introduced before. This project has been used as prototype
to get real experience following the development
workflows and using the UML diagrams.

In the requirements capture, three actors (Beamline
User, Acquisition Card and Storage Area) and eight use
cases (Start Acquisition, Collect One Image, Configure
System, Calibrate System, Monitor Acquisition, View
Image, Stop Acquisition and Save Images) were
identified and described, with the help of the users, to the
level required for the development.

Given the not so big size of the application, the analysis
and the design phases were carried together. The class
diagram contains two classes: a device server
implemented in C++ and graphical interface in Python.

After the experience gained during the project work, we
are convinced that the UML diagrams help us in finding a
common understanding with the users of what the system
should do. The use case artifact and the graphical
representation were fundamental in the discussions with
the beamline users about how they should interact with
the acquisition system and with the hardware engineers
about the cards. Achieving a good communication with
them allowed us a clear understanding of the problem,
which was the key for developing the right software
system.

The class diagram became central technique for the
object-oriented analysis. It also has a greatest range of
modelling concepts. Together with the sequential
diagram, it allows the refinement of the class, after a
couple of iterations.

Finally, the UML diagrams were very useful for the
generation of documentation, both about the architecture
and its components (classes).

For the near future, we would like to investigate further
other facilities provided by the tools. The automatic code
generation from the class and component diagrams will
facilitate the synchronization of the model and the code.
We also consider very important the inclusion of a n

Integrated Development Environment (IDE) to shorten
the cycle of editing-compiling-testing the code. Finally,
our configuration management tool will also have to be
integrated, specially bearing in mind that the process has
to scale up to the development for the full synchrotron.

CONCLUSIONS
The unified process, which is being proposed as for the

software development of the control system for the
Spanish light source does not impose any restriction in the
software development process. The main difference with
the traditional techniques is that the program is primarily
manifested as a model. The UML model generated during
the unified process facilitates the understanding between
the users and the developers, choose a suitable
architecture and facilitate the management of the project.
Furthermore, a good model of the control system will
facilitate its maintenance and its future upgrades, as well
as its testing and commissioning. And finally, this model
will be primary used for documenting the system.

We have developed a C++ and Python application
following this model-driven development strategy. The
development of this application has confirmed the
advantages previously described of this methodology, and
that confirm it as a good candidate for developing the
control system of the Spanish synchrotron. At the
moment, we are working at extending our experience to
cope with all the tools that will be required during the
development.

REFERENCES
[1] http://www.cells.es
[2] http://www.lls.ifae.es/
[3] http://www.xprogramming.com/xpmag/whatisxp.htm
[4] http://www.v-modell.de/director/products/je014.htm
[5] I. Jacobson, G. Booch, J. Rumbaugh, “The Unified

Software Development Process”, Addison-Wesley,
1999.

[6] http://www.omg.org/uml/
[7] http://sourceforge.net/projects/uml/
[8] http://www.rational.com/products/rose/index.jsp
[9] A subsystem is a grouping of elements (classes,

interfaces and other subsystems).

Proceedings of ICALEPCS2003, Gyeongju, Korea

268

	A PROPOSAL FOR MODELING THE CONTROL SYSTEM FOR THE SPANISH LIGHT SOURCE IN UML
	THE SPANISH LIGHT SOURCE
	THE DEVELOPMENT PROCESS
	The modelling language: UML

	USER REQUIREMENTS CAPTURE
	ANALYSIS MODEL
	DESIGN
	Architectural design
	Design class
	Dynamic view

	DAQ SYSTEM PROTOTYPE
	CONCLUSIONS
	REFERENCES

