
PC BASED INSTRUMENTATION, CURRENT EFFORTS AND FUTURE
TECHNOLOGY*

M. Stettler, L. Day, J. Power
Los Alamos National Laboratory, Los Alamos, NM, USA

Abstract
Instrumentation based on the PC architecture has been

fielded at many accelerator sites. The wide variety, high
performance, and reasonable cost of both commercial
hardware and software make this platform an attractive
choice for instrumentation. Current efforts on the SNS
accelerator include beam position monitors, wire
scanners, and beam current monitors. The design issues
related to PCI interfacing and mixed signal isolation in
the SNS diagnostics are discussed. The detail of the
interface between custom hardware and commercial
software is also presented. Design issues regarding
synchronous acquisition and processing of data in non
real time systems are addressed. Current and future trends
in PC hardware peripheral interconnects, including USB2,
1394, and PCI express are expanding the options
available to instrument designers. The relative strengths
of these interconnects for instrumentation and the state of
commercial software support is presented.

OVERVIEW
Instrumentation based on commodity computing

hardware, such as the PC, is becoming a common
occurrence. The high performance and low cost of this
platform usually compares favorably to custom and
industrial bus based solutions. The many variants of the
PC architecture cover a vast array of performance and
environmental requirements. In addition to the hardware
advantages, a very large selection of off the shelf software
exists for this platform. In addition to the obvious choices
of operating systems, a variety of commercial application
development environments (ADE), control system
toolkits, and system utilities are available. These
resources facilitate efficient development of intelligent
instrumentation.

Instrumentation Issues
When packaging an instrument in the PC form factor,

several issues need to be addressed. Current PCs utilize
the PCI bus as the standard in-box I/O standard, and since
the PC was not designed as an instrumentation platform,
electrical noise and power supply regulation is often
problematic.

The PCI bus provides a capable, high speed
interconnect for instrumentation. The automatic
configuration functions of OS or motherboard BIOS
allow substantial flexibility in obtaining system resources
without resorting to custom configuration software. In

addition, the ability to “bridge”, or create a local PCI bus
on a PCI card, allows complex, high performance
subsystems to be easily supported.

Since PC enclosures are designed for computers,
several analog isolation issues exist. In general the power
supply regulation is inadequate for precision analog
measurements, requiring local DC/DC converters and
filtering. In addition, the typical PC power supply does
not have more than a few watts of power available at -
12V, and -5V.

Perhaps the most limiting feature of the PC form factor
is the limited front panel space offered by the standard
PCI card. In some cases, blank panels in adjacent slots
can be utilized, but often custom modifications need to be
made in the enclosure. This is often the case when 1 or
2U rack mount enclosures are used.

Software Implementation
The basic software structure of an intelligent instrument

consists of the basic operating system, driver software to
support the acquisition hardware, any custom utilities
required to provide a stable application programming
interface (API), application level software which
implements the instrument’s functionality, and
communication software (generally known as
middleware) which allows for remote operation.

Figure 1: Basic software structure.

Middleware Application

Custom system level utilities

Acquisition HW
Drivers

Base Operating system

The OS selection for a PC based instrument hinges on
both system requirements and the desire to include
commercial software products in the final product.
Commodity operating systems such as Microsoft
Windows or one of the versions of LINUX provide access
to numerous high quality commercial products at the
expense of real time performance, although real time
extensions are available for both. Dedicated real time
operating systems such as Wind River vxWorks provide
excellent real time performance at the expense of
commercial tools.

* Work supported by the office of Basic Energy Science, Office of
Science of the US Dept. of Energy, and Oak Ridge National Lab.

Proceedings of ICALEPCS2003, Gyeongju, Korea

237

Unless the acquisition hardware is a commercial
product, some form of driver software is required to
interface the hardware to the OS. When using commodity
operating systems, several generic drivers are available
commercially, relieving developers of the task of driver
development. Usually some additional utility routines are
required to implement a hardware API for the application.

When utilizing a commodity OS, the issue of real time
data acquisition must be addressed. While hardware can
be triggered by external sources, a method must be
implemented to buffer data when the application cannot
react in a timely manner. This is typically accomplished
at the driver level, which even in non real time systems
provides microsecond response. This requirement often
leads to the development of “poorly behaved” drivers to
support real time acquisition, but is not a problem for a
single acquisition card type in a given system.

The Application is the core functionality of the
instrument, and is implemented using either low level
programming languages (such as C++), or an application
development environment (ADE). Modern ADEs provide
powerful tools for the manipulation and analysis of data,
as well as intuitive tools for creating local user interfaces.
The raw performance of applications developed with
many of these tools approaches that of low level
programming languages.

In order to allow remote control and data acquisition,
some form of communication middleware is required.
The choice here is dictated by the central control system
the instrument is to be used with. Unfortunately, there is
no real standardization of the APIs for middleware
products, so switching is currently a labor intensive
process

SNS BPM EXAMPLE
A typical example of a PC based instrument is the beam

phase and position monitor designed for the SNS LINAC.

The details of this device are documented in a related
paper [1]. This device consists of a custom modular
custom PCI card installed in a rack mount server chassis.
The software functionality is implemented with a
combination of commercial and custom modules.

Hardware design
The PCI based acquisition hardware is implemented in

four modules, the PCI acquisition motherboard, an analog
front end, a digital front end, and a clock multiplier. The
modularity allows significant re-use of parts of the design
on other instrumentation, as well as independent
development and test.

The PCI acquisition motherboard provides basic
acquisition and bus interface functions, as well as some
isolated power supplies for analog functions. Eight 16 bit
80MHz acquisition FIFOs are provided, controlled by a
10 channel timing sequencer with 25nS resolution. The
bus interface support includes a programmable DMA
controller to efficiently transfer the contents of the
acquisition FIFOs to main PC memory.

The analog front end is a commercial product designed
and built by Bergoz Instrumentation [3], interfacing
directly to the RF probes (4 BPM lobes). The AFE
provides four channels of down conversion, a local
oscillator distribution chain, and calibration. The
individual probe signals are either 402.5 MHz or 805
MHz, and are down converted to a 50MHz IF.

The digital front end provides four channels of 14 bit
ADCs clocked at 40MHz, and initial digital processing.
The digital processing de-convolves the multiplexed
quadrature stream created by under sampling the IF at 0.8
times the input stream. The resultant 8 arrays of
quadrature phase data are sent to the PCI acquisition
FIFOs. In addition, raw data from each ADC, or preset
ramp data can be acquired for test purposes.

The clock multiplier module provides the precision
clocks necessary for accurate phase measurements. The

Figure 2: The BPM system PCI card showing the clock multiplier (top left), DFE (center) and AFE (right).

Proceedings of ICALEPCS2003, Gyeongju, Korea

238

device currently accepts a 2.5 MHz reference and
generates the required 40MHz sampling clocks. The
device is serially programmed to accommodate a range of
reference inputs.

Software design
The software is implemented as a combination of

commercial and custom modules. The software design is
presented in detail in a related paper [2]. The intent of the
design was to utilize commercial products to as great a
degree as possible. Figure 3 shows the software structure,
which is similar to that of figure 1, with the substitution
of the actual products utilized.

The OS selected was Microsoft Windows, which
supports an unmatched variety of commercial tools and
ADEs. Additional advantages include self hosted
development and the ability to utilize many desktop
systems for development and test purposes.

Iss
T

cha
Wh
dev
sta
nec
one
the
im

Microsoft Windows OS

Color code:
Green – Commercial, Blue – Toolkit, Red – Custom

Jungo Windriver

Interface DLLs

National Instruments
LabView Application

EPICS
Channel
access

A
und
bus
Wh
situ
to

Figure 3: Software architecture

The driver and application layers were implemented
with commercial products, providing the advantage of a
stable, high quality development environment. The Jungo
[4] Windriver provided immediate access to the custom
PCI card, allowing hardware development to proceed in
parallel with software development. Likewise, National
Instruments [5] Labview provided a means for Instrument
application development independent of other efforts.

Ba
A

sys
tec
it
ma
ind
per
and

The only custom software in the device is two interface
DLLs which interfaced the commercial and toolkit
modules, whose APIs were not directly compatible. The
primary DLL provided an interface between Labview and
the PCI acquisition hardware utilizing Windriver. In
addition, it automatically substituted a hardware simulator
in the absence of a PCI card. This allowed application
development on virtually any PC. A second DLL was
required to communicate with a toolkit based middleware
product, EPICS (Experimental Physics and Industrial
Control System) Channel Access. In this case, the typical
use of Channel Access required the sending of very small
data packets at a high rate. Since the OS provided
communication mechanisms were optimized for block
transfers, a custom interface provided a large performance
boost.

U
gua
TD
iso
inc
bot
per
bas
ins
im

W
sup
inc

Proceedings of ICALEPCS2003, Gyeongju, Korea

239
Figure 4: SNS BPM system in 1U, rack-mount PC
ues
he SNS BPM system shows both the strengths and
llenges of packaging instrumentation in standard PCs.
ile the use of industry standard hardware eases
elopment significantly, the constraints imposed by

ndard enclosures are easily apparent in Figure 4. The
essity to modify commercial enclosures diminishes
 of the main advantages of using the PC architecture,
 ability to upgrade freely without hardware or software
pact.

PLATFORM EVOLUTION
s a commodity computing platform, the PC is
ergoing constant evolution. New base functionality,
 standards, and form factors are appearing regularly.
en using the PC as an instrumentation platform, this
ation is both an advantage and a challenge, especially

system design.

se Functionality
side from the never ending quest for greater general

tem performance, the current focus on streaming
hnologies is of major interest to instrumentation. While
would be nice if these developments were aimed at
king the PC a better data acquisition platform, the
ustry is aiming at vastly improved streaming video
formance. Two related technologies, isochronous I/O
 hyper threading, are current efforts in this direction.
nlike traditional computer I/O, isochronous I/O
rantees a fixed latency on a given channel. Unlike
M (time division multiplexing) systems, modern
chronous standards such as USB or PCI express
lude hardware and software to implement and manage
h fixed and variable latency requirements. With high
formance fixed latency I/O included as part of the
ic capabilities of the platform, high performance
trumentation will undoubtedly become easier to
plement.

hile hyper threading is Intel’s term for hardware
ported thread context switching, the concept of
reasing the number of virtual processors is key to the

software support of isochronous I/O hardware. While it is
presently unclear what exact method will be used in the
future, highly efficient context switching will be required
to support multiple fixed latency processing streams.

I/O busses
It should come as no surprise that new I/O standards are

being developed to support new higher performance
processors. In recent years, there has been much talk
regarding high speed serial interconnects.

In the PC, an in-box version of Infiniband, known as
PCI express, has been chosen as the next high
performance interconnect technology. This standard,
controlled by the PCI special interest group [6], presents
an interface to software very similar to current PCI while
providing support for isochronous operation and better
abstraction of the physical hardware interface. Since the
hardware implementation is a transaction based, high
speed serial channel (after all, it’s based on Infiniband),
external PCI express channels are certainly feasible.

For medium performance applications, reasonable high
speed serial solutions already exist in USB2 and IEEE
1394. Instrumentation systems that can tolerate data
transfer rates of 10MB/s or less can easily be
implemented in these technologies today. It is interesting
to note that USB has always supported isochronous
operation, and is specified tightly enough to have
commercial generic drivers available. In addition, special
bridging devices [7] are currently available supporting
USB2/PCI interfacing. These devices greatly simplify the
task of implementing remote PCI based instrumentation.
While IEEE 1394 is more of a hardware only
specification, the ability to have multiple masters
outweighs the disadvantage of more complex support
software in some applications.

Software Implications
It is no surprise that there are even more changes

planned in software than in hardware. Most of these are
far beyond the scope of this paper, only some of the most
obvious enhancements required to support the new
hardware described previously will be discussed.

Presently, only the most primitive support exists for
isochronous I/O. With the advent of PCI express, more
sophisticated OS support is currently in development (at
least for windows systems). This is requiring changes in
the way new drivers are written to take advantage of new
functionality and maintain system performance [8].

In addition, the platform is moving from a memory map
model for I/O to one based on messaging. In fact, the
memory map model for PCI is virtual on most modern
motherboards, with several pipeline stages for read and
write operations. Frequent servicing of interrupts or
spinning on a PCI address cause repeated pipeline
flushing, seriously degrading overall system performance.
In addition, the more sophisticated hardware operation
requires significant system software support, making
custom solutions less attractive. Utilizing an OS which

natively supports the new I/O models is already the
obvious solution.

CONCLUSIONS
The PC is an attractive platform for instrumentation

development, and will become more so in the near future.
The current challenges in hardware and software are
being met by technological advances, making future
development a more straightforward task than today.

The electrical and mechanical constraints of the
standard PC chassis can be overcome for medium speed
instrumentation by using USB2 or IEEE 1394 to connect
to an external chassis. With the aid of bridging devices,
new or existing instrumentation can be developed using
PCI, tested in desktop PCs, and deployed in separate
chassis. This separation provides not only electrical noise
and isolation benefits, but also allows for easy upgrade
and maintenance of the PC host in the field.

Effective software support of streaming data will
simplify the task of manipulating real time data. In
addition to base OS support, it is reasonable to expect that
class drivers (or at least generic commercial drivers) will
become available to support a high level API. Presently
these drivers are available for devices such as disk drives,
simplifying the software support for any hardware that
can be designed to mimic a standard disk’s operation.

As an example of how things have changed in the last
two years, the SNS LINAC BPM design is being
upgraded to utilize a USB2/PCI bridge, solving the
current packaging difficulties while preserving the design
investment. The software impact is minor – a different
generic commercial driver is available (also from Jungo),
which implements a nearly identical API, code changes
are confined to the interface DLL. No application level
changes are foreseen.

REFERENCES
[1] Beam Position Monitor Systems for the SNS LINAC,

J. Power et al., Particle Accelerator Conference, 2003
[2] A Modular Interface between Custom PCI

Instrumentation and Commercial Software, L.Day et
al, this conference

[3] Bergoz Instrumentation, http://www.bergoz.com
[4] Jungo Inc, http://www.jungo.com
[5] National Instruments Inc, http://www.ni.com
[6] PCI SIG, http://www.pcisig.com
[7] NetChip Technology, http://www.netchip.com,

reference device 2280.
[8] Designing PCI Express Architecture Isochronous

Devices and Drivers, Session code TPA415, WINHEC
2003. Also session codes TPA416, TPA417, TPA418,
TPA419, WINHEC 2003

Proceedings of ICALEPCS2003, Gyeongju, Korea

240

	OVERVIEW
	Instrumentation Issues
	Software Implementation

	SNS BPM EXAMPLE
	Hardware design
	Software design
	Issues

	PLATFORM EVOLUTION
	Base Functionality
	I/O busses
	Software Implications

	CONCLUSIONS
	REFERENCES

