

12th International Beam Instrumentation Conference

An Experimental Setup for PIXE Analysis in a Medical Cyclotron at TENMAK-NUKEN

<u>TU1C03</u>

Dr. Görkem Türemen

Dr. Serdar Bulut, Dr. Ümit Kaya, Dr. Dilaver Porsuk, N. Öykü Serin, Emin Yeltepe

12 SEP 2023

Outline

Motivation Experimental setup

Measurements

Outlook

Motivation

Analysis for

- Historical artifacts
- Forensic science
- Heritage science
- Semi-conductor technology
- Environmental science
- Minerals exploration
- Plant and animal biology
- Medicine, etc.

No facility in Türkiye for non-destructive IBA methods

Our country,

- 19 UNESCO World Heritage Sites
- cradle to a multitude of civilizations throughout history

Proton Accelerator Facility

IBA S.A. proton cyclotron 15-30 MeV / 0.1-1.2 mA 4 irradiation vaults

No. of personnel: ~30 (Phys., Chem., Biol., Eng., Tech.)

Radiopharmaceuticals/Radioisotope production (4 licenced products)

- Nal123, TlCl201 (active production)
- Ge68, Co57 (R&D phase)

R&D studies

- radiation damage
- non-destructive analysis, etc.

Irradiation setup

Installed at the end of the R&D beamline (2 quadrupole doublets, 2 steerers, 4 FCs, 2 beam screens, 4-jaw collimator, etc.)

Two different degrader systems (single and multi)

In-vacuum and in-air irradiation capability

2-30 MeV, 5 pA-20 μA

Irradiation chamber

Octagonal shaped aluminum vacuum chamber

16 vacuum-tight ports

4 different samples can be irradiated in a single run by a servo motor

Ports for PIXE, PIGE and RBS detectors and cabling

Beamline equipment

- Degraders, detectors, screens (pneumatically) and sample holder (servo motor)
- Measurement and pumping systems

are controlled remotely by PLC.

Energy degrader (single)

Pyrolytic graphite foil set (total: 1.3 mm) Aluminum flanges for collimation (less radioactivity) Copper blocks for cooling (welded Cu pipe) Mounted on the FC box just after beam extraction Degradation down to 3 MeV is possible

Energy degrader (multi)

Individually controlled copper degraders (maximum total thickness: 0.45 mm) Aluminum collimator (15 mm aperture) for each degrader foil Conduction cooling, no active component Inserted just after the 5-port magnet in the R&D vault Degradation down to 5 MeV

Beam energy measurement (SiLi)

Si(Li) detector with 5 mm thickness & 500 mm² active area, 55 keV FWHM

Detects up to 30 MeV protons

2003BT Pre-amplifier & DSA-LX multi-channel analyzer & Genie software (Mirion)

Calibrated with a multi-alpha source (4-6 MeV)

Beam size measurement

- In-house produced Al_2O_3 screen (ϕ : 40 mm)
- 45° with the axis of the beam
- Beam is shaped with collimators with different sizes (1, 10 and 25 mm)
- %90 intensity homogeneity (for 8 mm beam)

Current measurement

-HV

proton

electron collector 4-jaw collimator & 2 Faraday Cups signal 5 channel I-V converter with a microcontroller for collimator current Keithley 6482 Picoammeter for FC2 current Down to 5 pA and 10 pA SD at 1 nA's. Electron suppressor 70 Beam current (pA) pA range nA range 140 V by adjusting arc voltage of the ion source Beam current (nA) current (pA) Beam **E**-80 ∖∕ 82 V -250 300 350 400 450 500 0^E Time (s) doi.org/10.1016/j.nima.2020.164290 Time (s)

Irradiation setup for IBA analysis

- SDD (Rayspec), 133 eV FWHM at 5.895 keV with 40 mm² active area and 8 µm Be window for <u>PIXE</u>
 HPGe n-type (Mirion), 2.1 keV FWHM at 1332 keV and % 30 relative efficiency with carbon-fiber endcap for <u>PIGE</u>
 PIPS (Ortec), 19 keV FWHM at 5.486 MeV with 150 mm² active area and 500 µm depletion depth for <u>RBS</u>
 Mirion and Ortec pre-amplifiers for signal management
 CAEN and Mirion MCA's for digitization
- Quantus, Genie and GUPIX softwares for spectroscopy and analysis

Preliminary PIXE analysis

Manganese

Iron

1.29

0.68

Counts [#]

1x10 mix foil PIXE -100000 Mn-Ka₁ Mn-KB₁ Fe-Ka₁ 10000 Fe-KB₁ 1000 100 and the work of the work 10 4 16 2 3 5 6 7 8 9 10 11 12 13 14 15 Energy [keV] XRF(%) Unc.(\mp) PIXE(%) Unc.(\mp) Element Copper 56.17 56.16 0.22 N.A Nickel 41.66 N.A 41.95 0.17

N.A

N.A

100000 E I I I I I I I I I I I	· · · · · · · · · · · · · · · · · · ·
<u>業</u> の	1 TL coin —
ka, ount	1
0 . J	
10000 -	-
ž. Š	
	1
· 전 전 기	
1000	
	1
S S S S S S S S S S S S S S S S S S S	1
W MANN ALL I	1
Constant Martin //]
T MANANA ANALA I	rdin -
	"M
2 3 4 5 6 7 8 9 10 11 12	13 14 15 16
	Ellergy [kev]
Element $1 \text{ TL}(2009) = 1 \text{ TL}(2015)$	1 TL(2022)
PIXE XRF PIXE XRF	PIXE XRF
	0%
Copper 73.2 71.78 71.22 70.56	/6./0 /2.63
Nickel 14.37 15.63 14.78 16.34	15.02 15.96
Zinc 9.12 9.53 8.74 9.13	8.57 8.50
Manganese 0.14 0.13 0.33 0.262	0.15 0.12

3.2 MeV protons 7 nA current

0.008

0.005

1.23

0.57

Preliminary PIXE experiments

Decreasing background:

- Putting an X-ray absorber/filter to suppress low energy X-rays
- Using detector collimators (low Z) to avoid scattered radiation
- Coating the inside of the chamber for decreasing secondary particles arriving on the detector
- Applying magnetic field to deflect scattered particles from the sample

Increasing precision of the analysis:

- More elaborate peak fitting procedures
- Detailed uncertainty budget calculations
- Developing a 3D sample movement apparatus

Decrease the energy spread:

- Moving the system to the 40° port of the 5-port magnet and let the beam passing through a slit
- Performing beam dynamics studies to determine the required magnetic field for the quadrupoles

Increasing the accuracy and precision of charge measurement

• Putting all components of the measurement system inside the vault

Outlook

It is an ongoing work

- Planning to set-up a station for in-air PIXE
- Communication with national and international partners and stakeholders
- Standardizing the IBA methods
- Participating in proficiency tests and comparisons Providing ion beam analysis services

