

Analysis of the Transverse Schottky Signals in the LHC

Kacper Łasocha, Diogo Alves, CERN Beam Instrumentation Group 14.09.2023, Saskatoon, IBIC'23

• Fluctuations of the macroscopic beam signal due to **discrete motion (synchrotron or betatron)** of individual particles within the bunch

• Fluctuations of the macroscopic beam signal due to **discrete motion (synchrotron or betatron)** of individual particles within the bunch

• Fluctuations of the macroscopic beam signal due to **discrete motion (synchrotron or betatron)** of individual particles within the bunch

Fluctuations of the macroscopic beam signal due to **discrete motion (synchrotron or betatron)** of • individual particles within the bunch

- Fluctuations of the macroscopic beam signal due to **discrete motion (synchrotron or betatron)** of ٠ individual particles within the bunch
- Most pronounce for long, low intensity, transversly large bunches ۲

Double bunch length, lower bunch intensity, higher transverse size

Transverse Schottky signals

Transverse Schottky signals

Betatron tune

Mirrored difference method, minimize the cost function:

$$C_{MD}(k) = \sum_{i=1}^{i=N} \left| P_T^{\pm}(\omega_{k-i}) - P_T^{\pm}(\omega_{k+i}) \right|$$

Chromaticity

$$Q\xi = -\eta \left(n \frac{\Delta f_{-} - \Delta f_{+}}{\Delta f_{-} + \Delta f_{+}} - Q_{I} \right)$$

 Δf_\pm : RMS width of upper/lower sideband

In certain conditions +/- signs flip, see K. Lasocha and D. Alves, Phys. Rev. Accel. Beams 25, 062801

Transverse Schottky signals: assumptions

Schottky signals in LHC

- One system for two particle species: protons and Pb⁸²⁺ ions, one device per beam and plane
- Pair of slotted waveguides, probing beam field at 4.81 GHz, filtering and downmixing signal to 11.2 kHz
- Gating system enables observation of single bunches
- The only instrument measuring the LHC chromaticity in the non-invasive way

	p+	Pb ⁸²⁺			
N _{particles} (per bunch)	10 ¹¹	10 ⁸			
Bunch length (4σ)	1-1.	4 ns			
Normalized transverse emittance	1.5-2	5 μm			
Energy Inj/Flattop (per nucleon)	0.45 - 6.8 TeV	0.18 - 2.6 TeV			

23 September 2023

I. Steady beam conditions:

CERN

- Mostly at flattop energy of ion fills, shorter periods at flatbottom
- Easy to analyse: just use the theory

I. Steady beam conditions:

- Mostly at flattop energy of ion fills, shorter periods at flatbottom
- Easy to analyse: just use the theory

II. Local distortions:

CÉRN

- Caused by residual coherence, beam parameter mesurements, beam interaction with the surrounding
- Theory cannot be directly used

23 September 2023

I. Steady beam conditions:

- Mostly at flattop energy of ion fills, shorter periods at flatbottom
- Easy to analyse: just use the theory

II. Local distortions:

CÉRN

- Caused by residual coherence, beam parameter mesurements, beam interaction with the surrounding
- Theory cannot be directly used

I. Steady beam conditions:

- Mostly at flattop energy of ion fills, shorter periods at flatbottom
- Easy to analyse: just use the theory

II. Local distortions:

ÉRN

- Caused by residual coherence, beam parameter mesurements, beam interaction with the surrounding
- Theory cannot be directly used

I. Steady beam conditions:

- Mostly at flattop energy of ion fills, shorter periods at flatbottom
- Easy to analyse: just use the theory

II. Local distortions:

- Caused by residual coherence, beam parameter mesurements, beam interaction with the surrounding
- Theory cannot be directly used

III. Transient effects:

- Tune shifts, RF modulation, energy ramp
- Theory cannot be directly used to averaged spectra, but spectograms are easy to read

I. Steady beam conditions:

- Mostly at flattop energy of ion fills, shorter periods at flatbottom
- Easy to analyse: just use the theory

II. Local distortions:

- Caused by residual coherence, beam parameter mesurements, beam interaction with the surrounding
- Theory cannot be directly used

III. Transient effects:

- Tune shifts, RF modulation, energy ramp
- Theory cannot be directly used to averaged spectra, but spectograms are easy to read

23 September 2023

I. Steady beam conditions:

- Mostly at flattop energy of ion fills, shorter periods at flatbottom
- Easy to analyse: just use the theory

II. Local distortions:

- Caused by residual coherence, beam parameter mesurements, beam interaction with the surrounding
- Theory cannot be directly used

III. Transient effects:

- Tune shifts, RF modulation, energy ramp
- Theory cannot be directly used to averaged spectra, but spectograms are easy to read

23 September 2023

I. Steady beam conditions:

- Mostly at flattop energy of ion fills, shorter periods at flatbottom
- Easy to analyse: just use the theory

II. Local distortions:

- Caused by residual coherence, beam parameter mesurements, beam interaction with the surrounding
- Theory cannot be directly used

III. Transient effects:

- Tune shifts, RF modulation, energy ramp
- Theory cannot be directly used to averaged spectra, but spectograms are easy to read

IV. Beyond current theory effects:

- Octupole magnets, betatron coupling, impedance, all intrument problems
- Theory to analyse such spectra is still to be developed

CERN

Steady beam conditions:

Analysis techniques derived

- Mostly at flattop energy of ion fills, shorter periods at flatbottom
- Easy to analyse: just use the theory

Local distortions:

- Caused by residual coherence, beam parameter mesurements, beam interaction with the surrounding
- Theory cannot be directly used

III. Transient effects:

- Tune shifts, RF modulation, energy ramp
- Theory cannot be directly used to averaged spectra, but spectograms are easy to read

IV. Beyond current theory effects:

- Octupole magnets, betatron coupling, impedance, all intrument problems
- Theory to analyse such spectra is still to be developed

23 September 2023

0.25

Frequency - f_{rev} [f_{rev}]

0.30

0.35

0.20

0.15

0.40

Signal analysis in stable conditions

Example: 8 hour long ion collisions in Nov 2022

Betatron tune

$$C_{MD}(k) = \sum_{i=1}^{i=N} \left| P_T^{\pm}(\omega_{k-i}) - P_T^{\pm}(\omega_{k+i}) \right|$$

Chromaticity

$$Q\xi = -\eta \left(n \frac{\Delta f_{-} - \Delta f_{+}}{\Delta f_{-} + \Delta f_{+}} - Q_{I} \right)$$

Signal analysis in presence of local distortions Example: Early proton fill in March 2023

Chromaticity $Q\xi = -\eta \left(n \frac{\Delta f_{-} - \Delta f_{+}}{\Delta f_{-} + \Delta f_{+}} - Q_{I} \right)$

Offset of over 4 units...

Matrix formalism for Schottky spectra

Mathematically, Schottky spectra are given as a function of:

- Synchrotron amplitude distribution 2 parameters
- Nominal synchrotron frequency 1 parameter
- Betatron tune 1 parameter
- Chromaticity 1 parameter

For given parameters the spectrum can be calculated with a simple matrix transform.

$P_T^{\pm}(\omega_1, \hat{\tau_1}, \Omega_{s_0}, Q, Q\xi)$		$P_T^{\pm}(\omega_1, \hat{\tau_n}, \Omega_{s_0}, Q, Q\xi)$		$\widetilde{g}(\widehat{\tau}_1)$		$P_T^{\pm}(\omega_1)$	
$P_T^{\pm}(\omega_2, \hat{\tau_1}, \Omega_{s_0}, Q, Q\xi)$		$P_T^{\pm}(\omega_2, \hat{\tau_n}, \Omega_{s_0}, Q, Q\xi)$		$\widetilde{g}(\widehat{\tau}_2)$		$P_T^{\pm}(\omega_2)$	
:	۰.	÷	•	:	=	:	
$P_T^{\pm}(\omega_m, \hat{\tau_1}, \Omega_{s_0}, Q, Q\xi)$		$P_T^{\pm}(\omega_m, \hat{\tau_n}, \Omega_{s_0}, Q, Q\xi)$		$\widetilde{g}(\widehat{\tau_n})$		$P_T^{\pm}(\omega_m)$,
$\mathcal{M}(S)$	$\Omega_{s_0}, Q,$	$Q\xi))$		\mathcal{A}		s	-

Details in: K. Lasocha and D. Alves, Phys. Rev. Accel. Beams 23, 062803 K. Lasocha and D. Alves, Phys. Rev. Accel. Beams 25, 062801

Matrix formalism for Schottky spectra

Mathematically, Schottky spectra are given as a function of:

- Synchrotron amplitude distribution 2 parameters
- Nominal synchrotron frequency 1 parameter
- Betatron tune 1 parameter
- Chromaticity 1 parameter

For given parameters the spectrum can be calculated with a simple matrix transform.

Use case 1: fast Schottky spectra simulation

Use case 2 (spectra fitting): given an experimentally measured spectrum, true parameters would minimize the cost function:

$$C\left(\Omega_{s_0}, Q, Q\xi, \mathcal{A}\right) = |\mathcal{M}\left(\Omega_{s_0}, Q, Q\xi\right) \cdot \mathcal{A} - [\mathcal{S}_{exp}]|^2$$

Minimizing routines iteratively simulate Schottky spectra and compare them with the measurement.

$P_T^{\pm}(\omega_1, \hat{\tau_1}, \Omega_{s_0}, Q, Q\xi)$		$P_T^{\pm}(\omega_1, \hat{\tau_n}, \Omega_{s_0}, Q, Q\xi)$]	$\widetilde{g}(\widehat{\tau_1})$		$P_T^{\pm}(\omega_1)$	
$P_T^{\pm}(\omega_2, \hat{\tau_1}, \Omega_{s_0}, Q, Q\xi)$		$P_T^{\pm}(\omega_2, \widehat{\tau_n}, \Omega_{s_0}, Q, Q\xi)$		$\widetilde{g}(\widehat{ au_2})$	_	$P_T^{\pm}(\omega_2)$	
÷	·	÷		:	_	÷	
$P_T^{\pm}(\omega_m, \hat{\tau_1}, \Omega_{s_0}, Q, Q\xi)$		$P_T^{\pm}(\omega_m, \hat{\tau_n}, \Omega_{s_0}, Q, Q\xi)$		$\widetilde{g}(\widehat{\tau_n})$		$P_T^{\pm}(\omega_m)$	
$\mathcal{M}(S)$	$\Omega_{s_0}, Q,$	$Q\xi))$		$\widetilde{\mathcal{A}}$		ŝ	

Details in: K. Lasocha and D. Alves, Phys. Rev. Accel. Beams 23, 062803 K. Lasocha and D. Alves, Phys. Rev. Accel. Beams 25, 062801

Matrix formalism: excluding frequency bins

Contrary to previous methods, fitting procedure allow to exclude the spectral regions with undesired components.

 $\mathcal{M}(\Omega_{s_0}, Q, Q\xi))$

Signal analysis in presence of local distortions Example: Early proton fill in March 2023

Betatron tune $C_{MD}(k) = \sum_{i=1}^{i=N} \left| P_T^{\pm}(\omega_{k-i}) - P_T^{\pm}(\omega_{k+i}) \right|$ Only "valid" frequencies taken into sum

Chromaticity

$$C(\mathcal{A}, Q\xi) = |\mathcal{M}(Q\xi) \cdot \mathcal{A} - \mathcal{S}_{exp}|^2$$

Nominal synchrotron tune calculated independently, Cost function minimization using Differential Evolution algorithm.

23 September 2023

LHC Schottky online signal analysis pipeline

Implementation in the final stage of development, planned be in use in the end of 2023

Conclusions

Summary of the talk:

- Theory of transverse Schottky spectra reviewed and succesfully applied to stable beams,
- Local spectral distortions mitigation technique proposed and demonstrated on proton spectra,
- Automation of the analysis will be tested in the coming days.

Possible next steps:

- Handling of **transient effects**: 1D ---> 2D analysis; image recognition techniques?
- Expanding the theory of Schottky spectra: impedance, octupoles, ... See C. Lannoy et al., WEP034, IBIC'23

Thanks for your attention!

